{"title":"估计水污染在水网中的扩散是一个含有部分信息的Schrödinger桥梁问题","authors":"Michele Mascherpa , Isabel Haasler , Bengt Ahlgren , Johan Karlsson","doi":"10.1016/j.ejcon.2023.100846","DOIUrl":null,"url":null,"abstract":"<div><p>Incidents where water networks are contaminated with microorganisms or pollutants can result in a large number of infected or ill persons, and it is therefore important to quickly detect, localize and estimate the spread and source of the contamination. In many of today’s water networks only limited measurements are available, but with the current internet of things trend the number of sensors is increasing and there is a need for methods that can utilize this information. Motivated by this fact, we address the problem of estimating the spread of pollution in a water network given measurements from a set of sensors. We model the water flow as a Markov chain, representing the system as a set of states where each state represents the amount of water in a specific part of the network, e.g., a pipe or a part of a pipe. Then we seek the most likely flow of the pollution given the expected water flow and the sensors observations. This is a large-scale optimization problem that can be formulated as a Schrödinger bridge problem with partial information, and we address this by exploiting the connection with the entropy regularized multimarginal optimal transport problem. The software EPANET is used to simulate the spread of pollution in the water network and will be used for testing the performance of the methodology.</p></div>","PeriodicalId":50489,"journal":{"name":"European Journal of Control","volume":"74 ","pages":"Article 100846"},"PeriodicalIF":2.5000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0947358023000754/pdfft?md5=4a88d62e0de08c61f02e905377eb8813&pid=1-s2.0-S0947358023000754-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Estimating pollution spread in water networks as a Schrödinger bridge problem with partial information\",\"authors\":\"Michele Mascherpa , Isabel Haasler , Bengt Ahlgren , Johan Karlsson\",\"doi\":\"10.1016/j.ejcon.2023.100846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Incidents where water networks are contaminated with microorganisms or pollutants can result in a large number of infected or ill persons, and it is therefore important to quickly detect, localize and estimate the spread and source of the contamination. In many of today’s water networks only limited measurements are available, but with the current internet of things trend the number of sensors is increasing and there is a need for methods that can utilize this information. Motivated by this fact, we address the problem of estimating the spread of pollution in a water network given measurements from a set of sensors. We model the water flow as a Markov chain, representing the system as a set of states where each state represents the amount of water in a specific part of the network, e.g., a pipe or a part of a pipe. Then we seek the most likely flow of the pollution given the expected water flow and the sensors observations. This is a large-scale optimization problem that can be formulated as a Schrödinger bridge problem with partial information, and we address this by exploiting the connection with the entropy regularized multimarginal optimal transport problem. The software EPANET is used to simulate the spread of pollution in the water network and will be used for testing the performance of the methodology.</p></div>\",\"PeriodicalId\":50489,\"journal\":{\"name\":\"European Journal of Control\",\"volume\":\"74 \",\"pages\":\"Article 100846\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0947358023000754/pdfft?md5=4a88d62e0de08c61f02e905377eb8813&pid=1-s2.0-S0947358023000754-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0947358023000754\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0947358023000754","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Estimating pollution spread in water networks as a Schrödinger bridge problem with partial information
Incidents where water networks are contaminated with microorganisms or pollutants can result in a large number of infected or ill persons, and it is therefore important to quickly detect, localize and estimate the spread and source of the contamination. In many of today’s water networks only limited measurements are available, but with the current internet of things trend the number of sensors is increasing and there is a need for methods that can utilize this information. Motivated by this fact, we address the problem of estimating the spread of pollution in a water network given measurements from a set of sensors. We model the water flow as a Markov chain, representing the system as a set of states where each state represents the amount of water in a specific part of the network, e.g., a pipe or a part of a pipe. Then we seek the most likely flow of the pollution given the expected water flow and the sensors observations. This is a large-scale optimization problem that can be formulated as a Schrödinger bridge problem with partial information, and we address this by exploiting the connection with the entropy regularized multimarginal optimal transport problem. The software EPANET is used to simulate the spread of pollution in the water network and will be used for testing the performance of the methodology.
期刊介绍:
The European Control Association (EUCA) has among its objectives to promote the development of the discipline. Apart from the European Control Conferences, the European Journal of Control is the Association''s main channel for the dissemination of important contributions in the field.
The aim of the Journal is to publish high quality papers on the theory and practice of control and systems engineering.
The scope of the Journal will be wide and cover all aspects of the discipline including methodologies, techniques and applications.
Research in control and systems engineering is necessary to develop new concepts and tools which enhance our understanding and improve our ability to design and implement high performance control systems. Submitted papers should stress the practical motivations and relevance of their results.
The design and implementation of a successful control system requires the use of a range of techniques:
Modelling
Robustness Analysis
Identification
Optimization
Control Law Design
Numerical analysis
Fault Detection, and so on.