Elias Randjbaran, D. L. Majid, R. Zahari, M. Sultan, N. Mazlan
{"title":"碳纳米管体积对碳-芳纶混杂织物弯曲性能的影响","authors":"Elias Randjbaran, D. L. Majid, R. Zahari, M. Sultan, N. Mazlan","doi":"10.22055/JACM.2020.35554.2682","DOIUrl":null,"url":null,"abstract":"Carbon nanotubes indicate mechanical properties ideally examined for reinforced Carbon/Kevlar hybrid fabrics in the intact specimens by SEM and EDX observations an Carbon nanotubes indicated mechanical properties that were examined for reinforced Carbon/Kevlar hybrid fabrics in the intact specimens by SEM and EDX observations and after attempting six successful ballistic impacts, at various targets’ angles: normal impact (0-degree), 10-degree, 20-degree, 30-degree, and 40-degree) with the different volume of CNT% (0, 0.1, 0.3, 0.5, 0.7, 1, and 1.5) after attempting six successful ballistic impacts, at various targets’ angles: normal impact (0-degree), 10-degree, 20-degree, 30-degree, and 40-degree) with the different volume of CNT% (0, 0.1, 0.3, 0.5, 0.7, 1, and 1.5). Each sample was fabricated by the same curing unit and then evaluated by the three‐point bending universal testing machine model (INSTRON-3369). Flexural Stress-Strain curves under 3-points bending in CNT epoxy composite laminates calculated flexural modulus of elasticity and bending toughness at room temperature.","PeriodicalId":37801,"journal":{"name":"Applied and Computational Mechanics","volume":"7 1","pages":"839-848"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Impacts of Volume of Carbon Nanotubes on Bending for Carbon-Kevlar Hybrid Fabrics\",\"authors\":\"Elias Randjbaran, D. L. Majid, R. Zahari, M. Sultan, N. Mazlan\",\"doi\":\"10.22055/JACM.2020.35554.2682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon nanotubes indicate mechanical properties ideally examined for reinforced Carbon/Kevlar hybrid fabrics in the intact specimens by SEM and EDX observations an Carbon nanotubes indicated mechanical properties that were examined for reinforced Carbon/Kevlar hybrid fabrics in the intact specimens by SEM and EDX observations and after attempting six successful ballistic impacts, at various targets’ angles: normal impact (0-degree), 10-degree, 20-degree, 30-degree, and 40-degree) with the different volume of CNT% (0, 0.1, 0.3, 0.5, 0.7, 1, and 1.5) after attempting six successful ballistic impacts, at various targets’ angles: normal impact (0-degree), 10-degree, 20-degree, 30-degree, and 40-degree) with the different volume of CNT% (0, 0.1, 0.3, 0.5, 0.7, 1, and 1.5). Each sample was fabricated by the same curing unit and then evaluated by the three‐point bending universal testing machine model (INSTRON-3369). Flexural Stress-Strain curves under 3-points bending in CNT epoxy composite laminates calculated flexural modulus of elasticity and bending toughness at room temperature.\",\"PeriodicalId\":37801,\"journal\":{\"name\":\"Applied and Computational Mechanics\",\"volume\":\"7 1\",\"pages\":\"839-848\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22055/JACM.2020.35554.2682\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22055/JACM.2020.35554.2682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
Impacts of Volume of Carbon Nanotubes on Bending for Carbon-Kevlar Hybrid Fabrics
Carbon nanotubes indicate mechanical properties ideally examined for reinforced Carbon/Kevlar hybrid fabrics in the intact specimens by SEM and EDX observations an Carbon nanotubes indicated mechanical properties that were examined for reinforced Carbon/Kevlar hybrid fabrics in the intact specimens by SEM and EDX observations and after attempting six successful ballistic impacts, at various targets’ angles: normal impact (0-degree), 10-degree, 20-degree, 30-degree, and 40-degree) with the different volume of CNT% (0, 0.1, 0.3, 0.5, 0.7, 1, and 1.5) after attempting six successful ballistic impacts, at various targets’ angles: normal impact (0-degree), 10-degree, 20-degree, 30-degree, and 40-degree) with the different volume of CNT% (0, 0.1, 0.3, 0.5, 0.7, 1, and 1.5). Each sample was fabricated by the same curing unit and then evaluated by the three‐point bending universal testing machine model (INSTRON-3369). Flexural Stress-Strain curves under 3-points bending in CNT epoxy composite laminates calculated flexural modulus of elasticity and bending toughness at room temperature.
期刊介绍:
The ACM journal covers a broad spectrum of topics in all fields of applied and computational mechanics with special emphasis on mathematical modelling and numerical simulations with experimental support, if relevant. Our audience is the international scientific community, academics as well as engineers interested in such disciplines. Original research papers falling into the following areas are considered for possible publication: solid mechanics, mechanics of materials, thermodynamics, biomechanics and mechanobiology, fluid-structure interaction, dynamics of multibody systems, mechatronics, vibrations and waves, reliability and durability of structures, structural damage and fracture mechanics, heterogenous media and multiscale problems, structural mechanics, experimental methods in mechanics. This list is neither exhaustive nor fixed.