不同水和乙二醇浓度射流冲击增热方法的实验研究

IF 1.1 Q3 Engineering Journal of Thermal Engineering Pub Date : 2023-01-27 DOI:10.18186/thermal.1243481
S. Lahane, P. Deshmukh, Manoj Nargade
{"title":"不同水和乙二醇浓度射流冲击增热方法的实验研究","authors":"S. Lahane, P. Deshmukh, Manoj Nargade","doi":"10.18186/thermal.1243481","DOIUrl":null,"url":null,"abstract":"In the modern world, with rapid inventions in microscale electronics, devices suffers undesirable internal heat generation and, due to their tiny shapes, undergo large heat flux conditions. This emphasizes the development of effective and efficient heat dissipation methods to boost their performance and keep them in safe working conditions. The jet impingement cooling method is used for cooling purposes in many engineering applications, and is popular for quick removal of heat from the solid surfaces. The present experimental study is an investigation of effect impingement of jet of water and ethylene glycol mixture over a heated surface. The blending of ethylene glycol (C2H6O2) with water (H2O) as a base fluid enhances the average (convective) heat transfer coefficient (HTC). The cooling fluid with different concentrations of C2H6O2 varying from 10%, 25%, 50%, and 100% shows higher values of average convective coefficient at similar flow conditions than pure water. The fluid having mixture proportions 50% C2H6O2 and H2O shows an optimum value for heat transfer enhancement in the range of 30% to 75% than pure water at the same flow rates. It can be noted that based on mechanical stability and the cost associated, the experimental results reveal that the optimum value of the concentration of C2H6O2 in water is 50% for maximum heat transfer and at higher values of C2H6O2 hamper the mechanical stability and causes higher pumping power due to increase in viscosity of the fluid.","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation for heat transfer augmentation method of jet impingement using a fluid of different concentrations of water and ethylene glycol (EG)\",\"authors\":\"S. Lahane, P. Deshmukh, Manoj Nargade\",\"doi\":\"10.18186/thermal.1243481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the modern world, with rapid inventions in microscale electronics, devices suffers undesirable internal heat generation and, due to their tiny shapes, undergo large heat flux conditions. This emphasizes the development of effective and efficient heat dissipation methods to boost their performance and keep them in safe working conditions. The jet impingement cooling method is used for cooling purposes in many engineering applications, and is popular for quick removal of heat from the solid surfaces. The present experimental study is an investigation of effect impingement of jet of water and ethylene glycol mixture over a heated surface. The blending of ethylene glycol (C2H6O2) with water (H2O) as a base fluid enhances the average (convective) heat transfer coefficient (HTC). The cooling fluid with different concentrations of C2H6O2 varying from 10%, 25%, 50%, and 100% shows higher values of average convective coefficient at similar flow conditions than pure water. The fluid having mixture proportions 50% C2H6O2 and H2O shows an optimum value for heat transfer enhancement in the range of 30% to 75% than pure water at the same flow rates. It can be noted that based on mechanical stability and the cost associated, the experimental results reveal that the optimum value of the concentration of C2H6O2 in water is 50% for maximum heat transfer and at higher values of C2H6O2 hamper the mechanical stability and causes higher pumping power due to increase in viscosity of the fluid.\",\"PeriodicalId\":45841,\"journal\":{\"name\":\"Journal of Thermal Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18186/thermal.1243481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1243481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

在现代世界,随着微型电子技术的快速发明,器件会产生不希望的内部热量,并且由于其微小的形状,会经历大的热通量条件。这强调了开发有效和高效的散热方法,以提高其性能并使其保持在安全的工作条件下。射流冲击冷却方法在许多工程应用中用于冷却目的,并且在快速去除固体表面的热量方面很受欢迎。本实验研究的是水和乙二醇混合物射流在加热表面上的冲击效应。乙二醇(C2H6O2)与作为基础流体的水(H2O)的混合提高了平均(对流)传热系数(HTC)。具有10%、25%、50%和100%的不同浓度C2H6O2的冷却液在类似的流动条件下显示出比纯水更高的平均对流系数值。具有50%C2H6O2和H2O的混合物比例的流体在相同流速下显示出比纯水在30%至75%范围内的热传递增强的最佳值。可以注意到,基于机械稳定性和相关成本,实验结果表明,对于最大传热,水中C2H6O2浓度的最佳值为50%,并且在C2H6O2的较高值时,由于流体粘度的增加,阻碍了机械稳定性并导致较高的泵送功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental investigation for heat transfer augmentation method of jet impingement using a fluid of different concentrations of water and ethylene glycol (EG)
In the modern world, with rapid inventions in microscale electronics, devices suffers undesirable internal heat generation and, due to their tiny shapes, undergo large heat flux conditions. This emphasizes the development of effective and efficient heat dissipation methods to boost their performance and keep them in safe working conditions. The jet impingement cooling method is used for cooling purposes in many engineering applications, and is popular for quick removal of heat from the solid surfaces. The present experimental study is an investigation of effect impingement of jet of water and ethylene glycol mixture over a heated surface. The blending of ethylene glycol (C2H6O2) with water (H2O) as a base fluid enhances the average (convective) heat transfer coefficient (HTC). The cooling fluid with different concentrations of C2H6O2 varying from 10%, 25%, 50%, and 100% shows higher values of average convective coefficient at similar flow conditions than pure water. The fluid having mixture proportions 50% C2H6O2 and H2O shows an optimum value for heat transfer enhancement in the range of 30% to 75% than pure water at the same flow rates. It can be noted that based on mechanical stability and the cost associated, the experimental results reveal that the optimum value of the concentration of C2H6O2 in water is 50% for maximum heat transfer and at higher values of C2H6O2 hamper the mechanical stability and causes higher pumping power due to increase in viscosity of the fluid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
18.20%
发文量
61
审稿时长
4 weeks
期刊介绍: Journal of Thermal Enginering is aimed at giving a recognized platform to students, researchers, research scholars, teachers, authors and other professionals in the field of research in Thermal Engineering subjects, to publish their original and current research work to a wide, international audience. In order to achieve this goal, we will have applied for SCI-Expanded Index in 2021 after having an Impact Factor in 2020. The aim of the journal, published on behalf of Yildiz Technical University in Istanbul-Turkey, is to not only include actual, original and applied studies prepared on the sciences of heat transfer and thermodynamics, and contribute to the literature of engineering sciences on the national and international areas but also help the development of Mechanical Engineering. Engineers and academicians from disciplines of Power Plant Engineering, Energy Engineering, Building Services Engineering, HVAC Engineering, Solar Engineering, Wind Engineering, Nanoengineering, surface engineering, thin film technologies, and Computer Aided Engineering will be expected to benefit from this journal’s outputs.
期刊最新文献
Experimental investigation of double-glazed double-pass solar airheater (DG-DPSAH) with multi-v ribs having trapezoidal roughness geometry Experimental evaluation of the effect of leakage in scroll compressor Performance enhancement of stepped solar still coupled with evacuated tube collector An experimental investigation to study the performance characteristics of heat pipe using aqueous hybrid nanofluids Heat transfer enhancement and applications of thermal energy storage techniques on solar air collectors: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1