{"title":"静力和循环荷载作用下立体土工格栅-砂界面的循环响应","authors":"W. Zeng, F. Liu, M. Ying","doi":"10.1680/jgein.23.00009","DOIUrl":null,"url":null,"abstract":"The investigation of cyclic shear response on a geosynthetic–soil interface is important for reinforced soil structures. A stereoscopic geogrid with a thickened transverse-rib thickness increases the interaction with the soil compared with a planar geogrid. In this study, three-dimensional printing technology was used to produce stereoscopic geogrids with transverse-rib thicknesses of 5, 10, 15, and 20 mm. The influences of different cyclic shear displacement amplitudes (1, 3, 6, and 10 mm) and normal stresses (20, 40, and 60 kPa) on the direct shear tests under static and cyclic loading at the stereoscopic geogrid–sand interface were investigated. The results indicate that the maximum shear stress can be improved by the stereoscopic geogrid at larger cyclic shear displacement amplitudes. The effect of transverse-rib thickness on the fitted curves of the normalized interface shear stiffness and damping ratio was reversed. The cyclic shear process altered the relationship between apparent cohesiveness and transverse-rib thickness. The peak stress ratio of the stereoscopic geogrid–sand interface is proposed as a function of the transverse-rib thickness and maximum dilation angle.","PeriodicalId":12616,"journal":{"name":"Geosynthetics International","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyclic response of stereoscopic geogrid–sand interface under static and cyclic loading\",\"authors\":\"W. Zeng, F. Liu, M. Ying\",\"doi\":\"10.1680/jgein.23.00009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The investigation of cyclic shear response on a geosynthetic–soil interface is important for reinforced soil structures. A stereoscopic geogrid with a thickened transverse-rib thickness increases the interaction with the soil compared with a planar geogrid. In this study, three-dimensional printing technology was used to produce stereoscopic geogrids with transverse-rib thicknesses of 5, 10, 15, and 20 mm. The influences of different cyclic shear displacement amplitudes (1, 3, 6, and 10 mm) and normal stresses (20, 40, and 60 kPa) on the direct shear tests under static and cyclic loading at the stereoscopic geogrid–sand interface were investigated. The results indicate that the maximum shear stress can be improved by the stereoscopic geogrid at larger cyclic shear displacement amplitudes. The effect of transverse-rib thickness on the fitted curves of the normalized interface shear stiffness and damping ratio was reversed. The cyclic shear process altered the relationship between apparent cohesiveness and transverse-rib thickness. The peak stress ratio of the stereoscopic geogrid–sand interface is proposed as a function of the transverse-rib thickness and maximum dilation angle.\",\"PeriodicalId\":12616,\"journal\":{\"name\":\"Geosynthetics International\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geosynthetics International\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1680/jgein.23.00009\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosynthetics International","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1680/jgein.23.00009","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Cyclic response of stereoscopic geogrid–sand interface under static and cyclic loading
The investigation of cyclic shear response on a geosynthetic–soil interface is important for reinforced soil structures. A stereoscopic geogrid with a thickened transverse-rib thickness increases the interaction with the soil compared with a planar geogrid. In this study, three-dimensional printing technology was used to produce stereoscopic geogrids with transverse-rib thicknesses of 5, 10, 15, and 20 mm. The influences of different cyclic shear displacement amplitudes (1, 3, 6, and 10 mm) and normal stresses (20, 40, and 60 kPa) on the direct shear tests under static and cyclic loading at the stereoscopic geogrid–sand interface were investigated. The results indicate that the maximum shear stress can be improved by the stereoscopic geogrid at larger cyclic shear displacement amplitudes. The effect of transverse-rib thickness on the fitted curves of the normalized interface shear stiffness and damping ratio was reversed. The cyclic shear process altered the relationship between apparent cohesiveness and transverse-rib thickness. The peak stress ratio of the stereoscopic geogrid–sand interface is proposed as a function of the transverse-rib thickness and maximum dilation angle.
期刊介绍:
An online only, rapid publication journal, Geosynthetics International – an official journal of the International Geosynthetics Society (IGS) – publishes the best information on current geosynthetics technology in research, design innovation, new materials and construction practice.
Topics covered
The whole of geosynthetic materials (including natural fibre products) such as research, behaviour, performance analysis, testing, design, construction methods, case histories and field experience. Geosynthetics International is received by all members of the IGS as part of their membership, and is published in e-only format six times a year.