{"title":"倾角对平纹织物弹道冲击响应的影响","authors":"K. Yadav, A. Upadhyay, K. Shukla","doi":"10.1504/IJMSI.2019.10022234","DOIUrl":null,"url":null,"abstract":"This numerical study presents the effect of obliquity on ballistic impact response of plain-woven fabric. A numerical model of plain-woven fabric subjected to a high-velocity impact at yarns crossover is simulated with the help of commercial finite element tool ABAQUS. The FE analysis depicts that the ballistic impact response of plain-woven fabric largely depends on the obliquity of impact due to phenomena like uneven strain distribution in different directions and sliding of the projectile on woven fabric yarns about the point of impact. The total energy dissipated by the fabric showed a decreasing-increasing behaviour with an increase in obliquity. This transition in the trend of total energy dissipated by fabric came in between 30°-45°, which depends on relative dominance of sliding of yarn and uneven strain distribution.","PeriodicalId":39035,"journal":{"name":"International Journal of Materials and Structural Integrity","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of obliquity on ballistic impact response of plain-woven fabric\",\"authors\":\"K. Yadav, A. Upadhyay, K. Shukla\",\"doi\":\"10.1504/IJMSI.2019.10022234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This numerical study presents the effect of obliquity on ballistic impact response of plain-woven fabric. A numerical model of plain-woven fabric subjected to a high-velocity impact at yarns crossover is simulated with the help of commercial finite element tool ABAQUS. The FE analysis depicts that the ballistic impact response of plain-woven fabric largely depends on the obliquity of impact due to phenomena like uneven strain distribution in different directions and sliding of the projectile on woven fabric yarns about the point of impact. The total energy dissipated by the fabric showed a decreasing-increasing behaviour with an increase in obliquity. This transition in the trend of total energy dissipated by fabric came in between 30°-45°, which depends on relative dominance of sliding of yarn and uneven strain distribution.\",\"PeriodicalId\":39035,\"journal\":{\"name\":\"International Journal of Materials and Structural Integrity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Materials and Structural Integrity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJMSI.2019.10022234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials and Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJMSI.2019.10022234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Effect of obliquity on ballistic impact response of plain-woven fabric
This numerical study presents the effect of obliquity on ballistic impact response of plain-woven fabric. A numerical model of plain-woven fabric subjected to a high-velocity impact at yarns crossover is simulated with the help of commercial finite element tool ABAQUS. The FE analysis depicts that the ballistic impact response of plain-woven fabric largely depends on the obliquity of impact due to phenomena like uneven strain distribution in different directions and sliding of the projectile on woven fabric yarns about the point of impact. The total energy dissipated by the fabric showed a decreasing-increasing behaviour with an increase in obliquity. This transition in the trend of total energy dissipated by fabric came in between 30°-45°, which depends on relative dominance of sliding of yarn and uneven strain distribution.