二氧化硅-硫酸去除水环境中的重金属

IF 2.3 Q2 Environmental Science Journal of Water Reuse and Desalination Pub Date : 2021-04-21 DOI:10.2166/WRD.2021.085
Nasrin Hosseinahli, Maherram Hasanov, M. Abbasi
{"title":"二氧化硅-硫酸去除水环境中的重金属","authors":"Nasrin Hosseinahli, Maherram Hasanov, M. Abbasi","doi":"10.2166/WRD.2021.085","DOIUrl":null,"url":null,"abstract":"\n There is a growing environmental and health concern associated with contamination by heavy metals. It has also been intensified due to an increase of the exposure to such pollutants as a result of industrial and technological growth. Therefore, it is necessary to remove heavy metals in contaminated water to eliminate the associated risks. This study focused on the removal of heavy metal ions using silica sulfuric acid (SSA). A comprehensive study was conducted to assess the effect of different factors on the adsorption by SSA as well as selectivity properties of the adsorbent, kinetic and thermodynamic studies of the adsorption process. A batch test was used to remove heavy metals from a multi-element solution containing Ni(II), Pb(II), Mn(II), Cu(II), and Cd(II). The results showed that removal rate reached its peak at pH, string time, and adsorbent amount equal to 8, 60 min, and 0.04 g/mL of solution, respectively. The removal efficiency of Ni2+, Cd2+, Mn2+ dropped by increasing the volume of solution and smoothed at 150 mL while the removal of Pb2+ and Cu2+ did not vary with the volume. The removal efficiency by SSA was decreased as Pb > >Mn > >Ni ≥ Cu > Cd. In general, SSA successfully removed heavy metals from contaminated water.","PeriodicalId":17556,"journal":{"name":"Journal of Water Reuse and Desalination","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2021-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Heavy metals’ removal from aqueous environments using silica sulfuric acid\",\"authors\":\"Nasrin Hosseinahli, Maherram Hasanov, M. Abbasi\",\"doi\":\"10.2166/WRD.2021.085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n There is a growing environmental and health concern associated with contamination by heavy metals. It has also been intensified due to an increase of the exposure to such pollutants as a result of industrial and technological growth. Therefore, it is necessary to remove heavy metals in contaminated water to eliminate the associated risks. This study focused on the removal of heavy metal ions using silica sulfuric acid (SSA). A comprehensive study was conducted to assess the effect of different factors on the adsorption by SSA as well as selectivity properties of the adsorbent, kinetic and thermodynamic studies of the adsorption process. A batch test was used to remove heavy metals from a multi-element solution containing Ni(II), Pb(II), Mn(II), Cu(II), and Cd(II). The results showed that removal rate reached its peak at pH, string time, and adsorbent amount equal to 8, 60 min, and 0.04 g/mL of solution, respectively. The removal efficiency of Ni2+, Cd2+, Mn2+ dropped by increasing the volume of solution and smoothed at 150 mL while the removal of Pb2+ and Cu2+ did not vary with the volume. The removal efficiency by SSA was decreased as Pb > >Mn > >Ni ≥ Cu > Cd. In general, SSA successfully removed heavy metals from contaminated water.\",\"PeriodicalId\":17556,\"journal\":{\"name\":\"Journal of Water Reuse and Desalination\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2021-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Reuse and Desalination\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/WRD.2021.085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Reuse and Desalination","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/WRD.2021.085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 4

摘要

与重金属污染有关的环境和健康问题日益严重。由于工业和技术的发展,接触这类污染物的人数增加,这一问题也更加严重。因此,有必要去除污染水中的重金属,以消除相关的风险。研究了二氧化硅硫酸(SSA)对重金属离子的去除效果。综合考察了不同因素对SSA吸附的影响、吸附剂的选择性、吸附过程的动力学和热力学研究。对含Ni(II)、Pb(II)、Mn(II)、Cu(II)和Cd(II)的多元素溶液进行了批量去除重金属试验。结果表明,当pH = 8、串接时间= 60 min、吸附剂用量= 0.04 g/mL时,去除率最高。Ni2+、Cd2+、Mn2+的去除率随溶液体积的增加而下降,在150ml时趋于平缓,而Pb2+和Cu2+的去除率不随溶液体积的增加而变化。SSA对重金属的去除率随着Pb > >Mn > >Ni≥Cu > Cd而降低。总的来说,SSA对重金属的去除率较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heavy metals’ removal from aqueous environments using silica sulfuric acid
There is a growing environmental and health concern associated with contamination by heavy metals. It has also been intensified due to an increase of the exposure to such pollutants as a result of industrial and technological growth. Therefore, it is necessary to remove heavy metals in contaminated water to eliminate the associated risks. This study focused on the removal of heavy metal ions using silica sulfuric acid (SSA). A comprehensive study was conducted to assess the effect of different factors on the adsorption by SSA as well as selectivity properties of the adsorbent, kinetic and thermodynamic studies of the adsorption process. A batch test was used to remove heavy metals from a multi-element solution containing Ni(II), Pb(II), Mn(II), Cu(II), and Cd(II). The results showed that removal rate reached its peak at pH, string time, and adsorbent amount equal to 8, 60 min, and 0.04 g/mL of solution, respectively. The removal efficiency of Ni2+, Cd2+, Mn2+ dropped by increasing the volume of solution and smoothed at 150 mL while the removal of Pb2+ and Cu2+ did not vary with the volume. The removal efficiency by SSA was decreased as Pb > >Mn > >Ni ≥ Cu > Cd. In general, SSA successfully removed heavy metals from contaminated water.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Water Reuse and Desalination
Journal of Water Reuse and Desalination ENGINEERING, ENVIRONMENTAL-WATER RESOURCES
CiteScore
4.30
自引率
0.00%
发文量
23
审稿时长
16 weeks
期刊介绍: Journal of Water Reuse and Desalination publishes refereed review articles, theoretical and experimental research papers, new findings and issues of unplanned and planned reuse. The journal welcomes contributions from developing and developed countries.
期刊最新文献
Innovative strategies for treatment and management of saline water/wastewater Evaluation of UVLED disinfection for biofouling control during distribution of wastewater effluent Bioremoval efficiency and metabolomic profiles of cellular responses of Chlorella pyrenoidosa to phenol and 4-fluorophenol Construction and empirical research of the evaluation index system of environmental protection enterprises’ competitiveness based on the Delphi and AHP methods Deep learning algorithms were used to generate photovoltaic renewable energy in saline water analysis via an oxidation process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1