中国A股市场指数波动的数值特征、模型模拟与预测

IF 0.9 Q3 SOCIAL SCIENCES, INTERDISCIPLINARY 中国社会科学 Pub Date : 2022-04-03 DOI:10.1080/02529203.2022.2093072
Feng Yongfu, Hua Xia, Gao Jinkang
{"title":"中国A股市场指数波动的数值特征、模型模拟与预测","authors":"Feng Yongfu, Hua Xia, Gao Jinkang","doi":"10.1080/02529203.2022.2093072","DOIUrl":null,"url":null,"abstract":"Abstract This study investigates the basic numeric characteristics of Chinese A-share market index volatility (i.e., the clustering, heteroscedasticity, and jumps) from the perspective of data mining. It presents a theoretical-empirical model based on these three major characteristics and conducts a maximum likelihood estimation to study Chinese A-share market return data empirically. Results show that, in full-sample or special periods, this model calibrates the A-share index volatility well and simulates in-sample volatility better than the four major empirical models adopted to study volatility. In out-of-sample forecasts, this model performs better than the other four models on the value-at-risk dates, which are the volatile days. This model can also decompose and explain the volatility of the Chinese A-share index. On the basis of GARCH, this study revises the volatility model proposed by Maheu and extends Engle’s research framework. Thus, this model is of theoretical significance. This model’s simulation and forecast functioning can contribute to regulatory expectation management and investment portfolio construction.","PeriodicalId":51743,"journal":{"name":"中国社会科学","volume":"43 1","pages":"161 - 179"},"PeriodicalIF":0.9000,"publicationDate":"2022-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Numeric Characteristics of Chinese A-Share Market Index Volatility, Model Simulation, and Forecasting\",\"authors\":\"Feng Yongfu, Hua Xia, Gao Jinkang\",\"doi\":\"10.1080/02529203.2022.2093072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study investigates the basic numeric characteristics of Chinese A-share market index volatility (i.e., the clustering, heteroscedasticity, and jumps) from the perspective of data mining. It presents a theoretical-empirical model based on these three major characteristics and conducts a maximum likelihood estimation to study Chinese A-share market return data empirically. Results show that, in full-sample or special periods, this model calibrates the A-share index volatility well and simulates in-sample volatility better than the four major empirical models adopted to study volatility. In out-of-sample forecasts, this model performs better than the other four models on the value-at-risk dates, which are the volatile days. This model can also decompose and explain the volatility of the Chinese A-share index. On the basis of GARCH, this study revises the volatility model proposed by Maheu and extends Engle’s research framework. Thus, this model is of theoretical significance. This model’s simulation and forecast functioning can contribute to regulatory expectation management and investment portfolio construction.\",\"PeriodicalId\":51743,\"journal\":{\"name\":\"中国社会科学\",\"volume\":\"43 1\",\"pages\":\"161 - 179\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中国社会科学\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1080/02529203.2022.2093072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SOCIAL SCIENCES, INTERDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国社会科学","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1080/02529203.2022.2093072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文从数据挖掘的角度研究了中国A股市场指数波动的基本数值特征(即聚类性、异方差性和跳跃性)。基于这三个主要特征,提出了一个理论实证模型,并对中国a股市场收益率数据进行了最大似然估计。结果表明,无论是在全样本还是特殊时期,该模型都能很好地校准A股指数的波动率,并且比研究波动率的四个主要实证模型更好地模拟样本内的波动率。在样本外预测中,该模型在风险日(即波动日)的价值方面比其他四个模型表现更好。该模型还可以分解和解释中国A股指数的波动性。本研究在GARCH的基础上,对Maheu提出的波动率模型进行了修正,扩展了Engle的研究框架。因此,该模型具有一定的理论意义。该模型的模拟和预测功能有助于监管预期管理和投资组合构建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Numeric Characteristics of Chinese A-Share Market Index Volatility, Model Simulation, and Forecasting
Abstract This study investigates the basic numeric characteristics of Chinese A-share market index volatility (i.e., the clustering, heteroscedasticity, and jumps) from the perspective of data mining. It presents a theoretical-empirical model based on these three major characteristics and conducts a maximum likelihood estimation to study Chinese A-share market return data empirically. Results show that, in full-sample or special periods, this model calibrates the A-share index volatility well and simulates in-sample volatility better than the four major empirical models adopted to study volatility. In out-of-sample forecasts, this model performs better than the other four models on the value-at-risk dates, which are the volatile days. This model can also decompose and explain the volatility of the Chinese A-share index. On the basis of GARCH, this study revises the volatility model proposed by Maheu and extends Engle’s research framework. Thus, this model is of theoretical significance. This model’s simulation and forecast functioning can contribute to regulatory expectation management and investment portfolio construction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
中国社会科学
中国社会科学 SOCIAL SCIENCES, INTERDISCIPLINARY-
CiteScore
0.90
自引率
0.00%
发文量
5101
期刊介绍: Social Sciences in China Press (SSCP) was established in 1979, directly under the administration of the Chinese Academy of Social Sciences (CASS). Currently, SSCP publishes seven journals, one academic newspaper and an English epaper .
期刊最新文献
The Hierarchy of Distribution in Private Law How Does the Government Facilitate the Co-Production of Digital Public Safety Services?—Based on Empirical Evidence from Shenzhen How Does the Internet Impact the Public’s Perception of Information Security Risk? From Structural Imbalance to Structural Optimization: A Theoretical Analysis for Establishing a Modern Tax System Trustworthy Artificial Intelligence for Social Governance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1