{"title":"用于表面增强红外吸收光谱的红外超材料:推动超灵敏片上传感的前沿","authors":"Hong Zhou, Dongxiao Li, Xindan Hui, X. Mu","doi":"10.1080/15599612.2021.1953199","DOIUrl":null,"url":null,"abstract":"Abstract Surface-enhanced infrared absorption (SEIRA) spectroscopy is a powerful technique that overcomes the issue of low molecular absorption cross-sections in infrared spectroscopy. Due to the collective oscillations of electrons in the infrared regime, SEIRA using resonant metamaterial provides greatly enhanced (up to 107) electromagnetic fields extending up to tens of nanometers from the metamaterial. The enhanced near-field enables spectroscopic analysis and ultrasensitive on-chip sensing of molecules. This interesting characteristic has aroused widespread attention from researchers to SEIRA technology, and various SEIRA-based sensing applications have been continuously emerging. Optimization of the signal enhancement to obtain high sensing performance is the developing main thread of SEIRA technology. In this Review, we provide a basic understanding of SEIRA’s sensing mechanism and theoretical model. With this background, several SEIRA optimizing methods are discussed, ranging from design, materials to algorithms. Additionally, perspectives about the future development trends of SEIRA technologies are discussed.","PeriodicalId":50296,"journal":{"name":"International Journal of Optomechatronics","volume":"15 1","pages":"97 - 119"},"PeriodicalIF":6.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Infrared metamaterial for surface-enhanced infrared absorption spectroscopy: pushing the frontier of ultrasensitive on-chip sensing\",\"authors\":\"Hong Zhou, Dongxiao Li, Xindan Hui, X. Mu\",\"doi\":\"10.1080/15599612.2021.1953199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Surface-enhanced infrared absorption (SEIRA) spectroscopy is a powerful technique that overcomes the issue of low molecular absorption cross-sections in infrared spectroscopy. Due to the collective oscillations of electrons in the infrared regime, SEIRA using resonant metamaterial provides greatly enhanced (up to 107) electromagnetic fields extending up to tens of nanometers from the metamaterial. The enhanced near-field enables spectroscopic analysis and ultrasensitive on-chip sensing of molecules. This interesting characteristic has aroused widespread attention from researchers to SEIRA technology, and various SEIRA-based sensing applications have been continuously emerging. Optimization of the signal enhancement to obtain high sensing performance is the developing main thread of SEIRA technology. In this Review, we provide a basic understanding of SEIRA’s sensing mechanism and theoretical model. With this background, several SEIRA optimizing methods are discussed, ranging from design, materials to algorithms. Additionally, perspectives about the future development trends of SEIRA technologies are discussed.\",\"PeriodicalId\":50296,\"journal\":{\"name\":\"International Journal of Optomechatronics\",\"volume\":\"15 1\",\"pages\":\"97 - 119\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optomechatronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15599612.2021.1953199\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optomechatronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15599612.2021.1953199","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Infrared metamaterial for surface-enhanced infrared absorption spectroscopy: pushing the frontier of ultrasensitive on-chip sensing
Abstract Surface-enhanced infrared absorption (SEIRA) spectroscopy is a powerful technique that overcomes the issue of low molecular absorption cross-sections in infrared spectroscopy. Due to the collective oscillations of electrons in the infrared regime, SEIRA using resonant metamaterial provides greatly enhanced (up to 107) electromagnetic fields extending up to tens of nanometers from the metamaterial. The enhanced near-field enables spectroscopic analysis and ultrasensitive on-chip sensing of molecules. This interesting characteristic has aroused widespread attention from researchers to SEIRA technology, and various SEIRA-based sensing applications have been continuously emerging. Optimization of the signal enhancement to obtain high sensing performance is the developing main thread of SEIRA technology. In this Review, we provide a basic understanding of SEIRA’s sensing mechanism and theoretical model. With this background, several SEIRA optimizing methods are discussed, ranging from design, materials to algorithms. Additionally, perspectives about the future development trends of SEIRA technologies are discussed.
期刊介绍:
International Journal of Optomechatronics publishes the latest results of multidisciplinary research at the crossroads between optics, mechanics, fluidics and electronics.
Topics you can submit include, but are not limited to:
-Adaptive optics-
Optomechanics-
Machine vision, tracking and control-
Image-based micro-/nano- manipulation-
Control engineering for optomechatronics-
Optical metrology-
Optical sensors and light-based actuators-
Optomechatronics for astronomy and space applications-
Optical-based inspection and fault diagnosis-
Micro-/nano- optomechanical systems (MOEMS)-
Optofluidics-
Optical assembly and packaging-
Optical and vision-based manufacturing, processes, monitoring, and control-
Optomechatronics systems in bio- and medical technologies (such as optical coherence tomography (OCT) systems or endoscopes and optical based medical instruments)