Máté Levente Kis, Bálint Hajdu, P. Dorkov, Ivayla N. Pantcheva, B. Gyurcsik
{"title":"M(II)-莫能酸盐竞争反应溶液化学的圆二色谱研究","authors":"Máté Levente Kis, Bálint Hajdu, P. Dorkov, Ivayla N. Pantcheva, B. Gyurcsik","doi":"10.3390/inorganics11080334","DOIUrl":null,"url":null,"abstract":"The chirality of the polyether ionophore monensic acid A can be successfully used to study its coordination ability in solution. A complementary approach to gain new insights into the complexation chemistry of the antibiotic (studied previously by circular dichroism (CD) spectroscopy in the ultraviolet range (UV-CD)) is presented. (1) Methods: The CD spectroscopy in the visible (VIS-CD) and near-infrared (NIR-CD) range is applied to evaluate the affinity of deprotonated monensic acid A (monensinate A) towards Ni(II) or Co(II) cations in methanolic solution. Competition experiments between a variety of colorless divalent metal ions for binding the ligand anion were also performed. (2) Results: The stability constants of the species observed in binary Ni(II)/Co(II)-monensinate systems and their distribution were reevaluated with the VIS- and NIR-CD techniques. The data confirmed the formation of mono and bis complexes depending on the metal-to-ligand molar ratio. The studies on the systems containing two competing divalent metal cations exclude the formation of ternary complex species but provide an opportunity to also calculate the stability constants of Zn(II), Mg(II), and Ca(II) monensinates. (3) Conclusions: The advantages of CD spectroscopy in the VIS-NIR range (“invisible” ligand and metal salts, “visible” chiral complex species) simplify the experimental dataset evaluation and increase the reliability of computed results.","PeriodicalId":13572,"journal":{"name":"Inorganics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Circular Dichroism Spectroscopic Studies on Solution Chemistry of M(II)-Monensinates in Their Competition Reactions\",\"authors\":\"Máté Levente Kis, Bálint Hajdu, P. Dorkov, Ivayla N. Pantcheva, B. Gyurcsik\",\"doi\":\"10.3390/inorganics11080334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The chirality of the polyether ionophore monensic acid A can be successfully used to study its coordination ability in solution. A complementary approach to gain new insights into the complexation chemistry of the antibiotic (studied previously by circular dichroism (CD) spectroscopy in the ultraviolet range (UV-CD)) is presented. (1) Methods: The CD spectroscopy in the visible (VIS-CD) and near-infrared (NIR-CD) range is applied to evaluate the affinity of deprotonated monensic acid A (monensinate A) towards Ni(II) or Co(II) cations in methanolic solution. Competition experiments between a variety of colorless divalent metal ions for binding the ligand anion were also performed. (2) Results: The stability constants of the species observed in binary Ni(II)/Co(II)-monensinate systems and their distribution were reevaluated with the VIS- and NIR-CD techniques. The data confirmed the formation of mono and bis complexes depending on the metal-to-ligand molar ratio. The studies on the systems containing two competing divalent metal cations exclude the formation of ternary complex species but provide an opportunity to also calculate the stability constants of Zn(II), Mg(II), and Ca(II) monensinates. (3) Conclusions: The advantages of CD spectroscopy in the VIS-NIR range (“invisible” ligand and metal salts, “visible” chiral complex species) simplify the experimental dataset evaluation and increase the reliability of computed results.\",\"PeriodicalId\":13572,\"journal\":{\"name\":\"Inorganics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/inorganics11080334\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/inorganics11080334","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
摘要
聚醚离子载体壬烯酸A的手性可以成功地用于研究其在溶液中的配位能力。提出了一种补充方法,以获得抗生素络合化学的新见解(以前通过圆二色(CD)光谱在紫外范围(UV-CD)研究)。(1)方法:采用可见光(VIS-CD)和近红外(NIR-CD)光谱评价去质子化monensinate A (monensinate A)对甲醇溶液中Ni(II)或Co(II)阳离子的亲和力。本文还进行了多种无色二价金属离子与配体阴离子结合的竞争实验。(2)结果:用VIS-和NIR-CD技术重新评估了Ni(II)/Co(II)-monensinate二元体系中所观察到的物质的稳定性常数及其分布。数据证实了单和双配合物的形成取决于金属与配体的摩尔比。对含有两个相互竞争的二价金属阳离子的体系的研究排除了三元配合物的形成,但也提供了计算Zn(II), Mg(II)和Ca(II) monensinates的稳定常数的机会。(3)结论:CD光谱在VIS-NIR范围内(“不可见”配体和金属盐,“可见”手性配合物)的优势简化了实验数据集评估,提高了计算结果的可靠性。
Circular Dichroism Spectroscopic Studies on Solution Chemistry of M(II)-Monensinates in Their Competition Reactions
The chirality of the polyether ionophore monensic acid A can be successfully used to study its coordination ability in solution. A complementary approach to gain new insights into the complexation chemistry of the antibiotic (studied previously by circular dichroism (CD) spectroscopy in the ultraviolet range (UV-CD)) is presented. (1) Methods: The CD spectroscopy in the visible (VIS-CD) and near-infrared (NIR-CD) range is applied to evaluate the affinity of deprotonated monensic acid A (monensinate A) towards Ni(II) or Co(II) cations in methanolic solution. Competition experiments between a variety of colorless divalent metal ions for binding the ligand anion were also performed. (2) Results: The stability constants of the species observed in binary Ni(II)/Co(II)-monensinate systems and their distribution were reevaluated with the VIS- and NIR-CD techniques. The data confirmed the formation of mono and bis complexes depending on the metal-to-ligand molar ratio. The studies on the systems containing two competing divalent metal cations exclude the formation of ternary complex species but provide an opportunity to also calculate the stability constants of Zn(II), Mg(II), and Ca(II) monensinates. (3) Conclusions: The advantages of CD spectroscopy in the VIS-NIR range (“invisible” ligand and metal salts, “visible” chiral complex species) simplify the experimental dataset evaluation and increase the reliability of computed results.
期刊介绍:
Inorganics is an open access journal that covers all aspects of inorganic chemistry research. Topics include but are not limited to: synthesis and characterization of inorganic compounds, complexes and materials structure and bonding in inorganic molecular and solid state compounds spectroscopic, magnetic, physical and chemical properties of inorganic compounds chemical reactivity, physical properties and applications of inorganic compounds and materials mechanisms of inorganic reactions organometallic compounds inorganic cluster chemistry heterogenous and homogeneous catalytic reactions promoted by inorganic compounds thermodynamics and kinetics of significant new and known inorganic compounds supramolecular systems and coordination polymers bio-inorganic chemistry and applications of inorganic compounds in biological systems and medicine environmental and sustainable energy applications of inorganic compounds and materials MD