基于脑电图的人工智能脑机接口及其应用综述

Zehong Cao
{"title":"基于脑电图的人工智能脑机接口及其应用综述","authors":"Zehong Cao","doi":"10.26599/BSA.2020.9050017","DOIUrl":null,"url":null,"abstract":"The advancement in neuroscience and computer science promotes the ability of the human brain to communicate and interact with the environment, making brain–computer interface (BCI) top interdisciplinary research. Furthermore, with the modern technology advancement in artificial intelligence (AI), including machine learning (ML) and deep learning (DL) methods, there is vast growing interest in the electroencephalogram (EEG)‐based BCIs for AI‐related visual, literal, and motion applications. In this review study, the literature on mainstreams of AI for the EEG‐based BCI applications is investigated to fill gaps in the interdisciplinary BCI field. Specifically, the EEG signals and their main applications in BCI are first briefly introduced. Next, the latest AI technologies, including the ML and DL models, are presented to monitor and feedback human cognitive states. Finally, some BCI‐inspired AI applications, including computer vision, natural language processing, and robotic control applications, are presented. The future research directions of the EEG‐based BCI are highlighted in line with the AI technologies and applications.","PeriodicalId":67062,"journal":{"name":"Brain Science Advances","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"A review of artificial intelligence for EEG‐based brain−computer interfaces and applications\",\"authors\":\"Zehong Cao\",\"doi\":\"10.26599/BSA.2020.9050017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advancement in neuroscience and computer science promotes the ability of the human brain to communicate and interact with the environment, making brain–computer interface (BCI) top interdisciplinary research. Furthermore, with the modern technology advancement in artificial intelligence (AI), including machine learning (ML) and deep learning (DL) methods, there is vast growing interest in the electroencephalogram (EEG)‐based BCIs for AI‐related visual, literal, and motion applications. In this review study, the literature on mainstreams of AI for the EEG‐based BCI applications is investigated to fill gaps in the interdisciplinary BCI field. Specifically, the EEG signals and their main applications in BCI are first briefly introduced. Next, the latest AI technologies, including the ML and DL models, are presented to monitor and feedback human cognitive states. Finally, some BCI‐inspired AI applications, including computer vision, natural language processing, and robotic control applications, are presented. The future research directions of the EEG‐based BCI are highlighted in line with the AI technologies and applications.\",\"PeriodicalId\":67062,\"journal\":{\"name\":\"Brain Science Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Science Advances\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.26599/BSA.2020.9050017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Science Advances","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.26599/BSA.2020.9050017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

神经科学和计算机科学的进步促进了人类大脑与环境交流和互动的能力,使脑机接口(BCI)成为跨学科研究的热点。此外,随着人工智能(AI)的现代技术进步,包括机器学习(ML)和深度学习(DL)方法,人们对基于脑电图(EEG)的脑机接口越来越感兴趣,用于与AI相关的视觉、文字和运动应用。在本综述研究中,研究了基于脑电的脑机接口应用中人工智能的主流文献,以填补跨学科脑机接口领域的空白。首先简要介绍了脑电信号及其在脑机接口中的主要应用。接下来,介绍了最新的人工智能技术,包括ML和DL模型,以监测和反馈人类的认知状态。最后,介绍了一些受BCI启发的人工智能应用,包括计算机视觉、自然语言处理和机器人控制应用。结合人工智能技术和应用,提出了基于脑电的脑机接口未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A review of artificial intelligence for EEG‐based brain−computer interfaces and applications
The advancement in neuroscience and computer science promotes the ability of the human brain to communicate and interact with the environment, making brain–computer interface (BCI) top interdisciplinary research. Furthermore, with the modern technology advancement in artificial intelligence (AI), including machine learning (ML) and deep learning (DL) methods, there is vast growing interest in the electroencephalogram (EEG)‐based BCIs for AI‐related visual, literal, and motion applications. In this review study, the literature on mainstreams of AI for the EEG‐based BCI applications is investigated to fill gaps in the interdisciplinary BCI field. Specifically, the EEG signals and their main applications in BCI are first briefly introduced. Next, the latest AI technologies, including the ML and DL models, are presented to monitor and feedback human cognitive states. Finally, some BCI‐inspired AI applications, including computer vision, natural language processing, and robotic control applications, are presented. The future research directions of the EEG‐based BCI are highlighted in line with the AI technologies and applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
27
审稿时长
10 weeks
期刊最新文献
A review of deep learning methods for cross-subject rapid serial visual presentation detection in World Robot Contest 2022 Overview of recognition methods for SSVEP-based BCIs in World Robot Contest 2022: MATLAB undergraduate group Algorithm contest of motor imagery BCI in the World Robot Contest 2022: A survey Winning algorithms in BCI Controlled Robot Contest in World Robot Contest 2022: BCI Turing Test Overview of the winning approaches in 2022 World Robot Contest Championship–Asynchronous SSVEP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1