考虑储存时间和温度影响的复合材料薄壁透镜管展开分析

IF 5.3 1区 工程技术 Q1 ENGINEERING, AEROSPACE Chinese Journal of Aeronautics Pub Date : 2024-01-01 DOI:10.1016/j.cja.2023.05.011
Jinfeng DENG , Ning AN , Qilong JIA , Xiaofei MA
{"title":"考虑储存时间和温度影响的复合材料薄壁透镜管展开分析","authors":"Jinfeng DENG ,&nbsp;Ning AN ,&nbsp;Qilong JIA ,&nbsp;Xiaofei MA","doi":"10.1016/j.cja.2023.05.011","DOIUrl":null,"url":null,"abstract":"<div><p>Composite Thin-walled Lenticular Tube (CTLT) is increasingly utilized in small satellites missions as a lightweight, foldable, and rollable structural material that facilitates the construction of large deployable systems. The CTLT is initially flattened and coiled around a central hub for storage before launch, during which elastic energy is stored as deformation energy, allowing it to be self-deployed on demand for use in orbit. This work presents a comprehensive investigation into the coiling, storage and deployment behaviors of CTLT that wraps around a central hub. A nonlinear explicit dynamic finite element model was developed with both deformable CTLT and rigid-bodies mechanisms including the central hub and guide rollers, as well as the complex interactions among them. The coiling mechanics characteristics such as stored strain energy and rotational moment were presented and validated against experimental data in the literature. Then, the dynamic deployment behaviors were analyzed in terms of two different deployment methods, namely, controlled deployment and free deployment. The effect of material property change during storage was also discussed through numerical experiments.</p></div>","PeriodicalId":55631,"journal":{"name":"Chinese Journal of Aeronautics","volume":"37 1","pages":"Pages 162-172"},"PeriodicalIF":5.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1000936123001632/pdfft?md5=559a124f51b20a06876ddd006755a19a&pid=1-s2.0-S1000936123001632-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Deployment analysis of composite thin-walled lenticular tubes with effect of storage time and temperature\",\"authors\":\"Jinfeng DENG ,&nbsp;Ning AN ,&nbsp;Qilong JIA ,&nbsp;Xiaofei MA\",\"doi\":\"10.1016/j.cja.2023.05.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Composite Thin-walled Lenticular Tube (CTLT) is increasingly utilized in small satellites missions as a lightweight, foldable, and rollable structural material that facilitates the construction of large deployable systems. The CTLT is initially flattened and coiled around a central hub for storage before launch, during which elastic energy is stored as deformation energy, allowing it to be self-deployed on demand for use in orbit. This work presents a comprehensive investigation into the coiling, storage and deployment behaviors of CTLT that wraps around a central hub. A nonlinear explicit dynamic finite element model was developed with both deformable CTLT and rigid-bodies mechanisms including the central hub and guide rollers, as well as the complex interactions among them. The coiling mechanics characteristics such as stored strain energy and rotational moment were presented and validated against experimental data in the literature. Then, the dynamic deployment behaviors were analyzed in terms of two different deployment methods, namely, controlled deployment and free deployment. The effect of material property change during storage was also discussed through numerical experiments.</p></div>\",\"PeriodicalId\":55631,\"journal\":{\"name\":\"Chinese Journal of Aeronautics\",\"volume\":\"37 1\",\"pages\":\"Pages 162-172\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1000936123001632/pdfft?md5=559a124f51b20a06876ddd006755a19a&pid=1-s2.0-S1000936123001632-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Aeronautics\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1000936123001632\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Aeronautics","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000936123001632","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

复合薄壁光栅管(CTLT)作为一种轻质、可折叠、可滚动的结构材料,越来越多地被用于小型卫星任务中,为建造大型可部署系统提供了便利。在发射前,CTLT 最初会被压扁并卷绕在一个中心枢纽周围进行储存,在此期间,弹性能量会被储存为形变能量,使其能够按需自行展开,以便在轨道上使用。本研究对围绕中心轮毂的 CTLT 的卷绕、存储和部署行为进行了全面研究。研究开发了一个非线性显式动态有限元模型,其中包括可变形 CTLT 和刚体机构(包括中心轮毂和导向辊),以及它们之间复杂的相互作用。提出了卷绕力学特性,如存储应变能和旋转力矩,并根据文献中的实验数据进行了验证。然后,分析了两种不同展开方式(即受控展开和自由展开)的动态展开行为。此外,还通过数值实验讨论了存储过程中材料特性变化的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deployment analysis of composite thin-walled lenticular tubes with effect of storage time and temperature

Composite Thin-walled Lenticular Tube (CTLT) is increasingly utilized in small satellites missions as a lightweight, foldable, and rollable structural material that facilitates the construction of large deployable systems. The CTLT is initially flattened and coiled around a central hub for storage before launch, during which elastic energy is stored as deformation energy, allowing it to be self-deployed on demand for use in orbit. This work presents a comprehensive investigation into the coiling, storage and deployment behaviors of CTLT that wraps around a central hub. A nonlinear explicit dynamic finite element model was developed with both deformable CTLT and rigid-bodies mechanisms including the central hub and guide rollers, as well as the complex interactions among them. The coiling mechanics characteristics such as stored strain energy and rotational moment were presented and validated against experimental data in the literature. Then, the dynamic deployment behaviors were analyzed in terms of two different deployment methods, namely, controlled deployment and free deployment. The effect of material property change during storage was also discussed through numerical experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Aeronautics
Chinese Journal of Aeronautics 工程技术-工程:宇航
CiteScore
10.00
自引率
17.50%
发文量
3080
审稿时长
55 days
期刊介绍: Chinese Journal of Aeronautics (CJA) is an open access, peer-reviewed international journal covering all aspects of aerospace engineering. The Journal reports the scientific and technological achievements and frontiers in aeronautic engineering and astronautic engineering, in both theory and practice, such as theoretical research articles, experiment ones, research notes, comprehensive reviews, technological briefs and other reports on the latest developments and everything related to the fields of aeronautics and astronautics, as well as those ground equipment concerned.
期刊最新文献
Editorial Board - Inside Front Cover Table of Content Inhibiting plastic tensile instability of non-symmetric thin-walled shell component via increasing regional metal inflow based on heterogeneous pressure-carrying medium Technologies and studies of gas exchange in two-stroke aircraft piston engine: A review Mechanism of capture section affecting an intake for atmosphere-breathing electric propulsion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1