跨文化概括性的因果框架

IF 15.6 1区 心理学 Q1 PSYCHOLOGY Advances in Methods and Practices in Psychological Science Pub Date : 2021-09-23 DOI:10.1177/25152459221106366
Dominik Deffner, J. Rohrer, R. Mcelreath
{"title":"跨文化概括性的因果框架","authors":"Dominik Deffner, J. Rohrer, R. Mcelreath","doi":"10.1177/25152459221106366","DOIUrl":null,"url":null,"abstract":"Behavioral researchers increasingly recognize the need for more diverse samples that capture the breadth of human experience. Current attempts to establish generalizability across populations focus on threats to validity, constraints on generalization, and the accumulation of large, cross-cultural data sets. But for continued progress, we also require a framework that lets us determine which inferences can be drawn and how to make informative cross-cultural comparisons. We describe a generative causal-modeling framework and outline simple graphical criteria to derive analytic strategies and implied generalizations. Using both simulated and real data, we demonstrate how to project and compare estimates across populations and further show how to formally represent measurement equivalence or inequivalence across societies. We conclude with a discussion of how a formal framework for generalizability can assist researchers in designing more informative cross-cultural studies and thus provides a more solid foundation for cumulative and generalizable behavioral research.","PeriodicalId":55645,"journal":{"name":"Advances in Methods and Practices in Psychological Science","volume":"5 1","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"A Causal Framework for Cross-Cultural Generalizability\",\"authors\":\"Dominik Deffner, J. Rohrer, R. Mcelreath\",\"doi\":\"10.1177/25152459221106366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Behavioral researchers increasingly recognize the need for more diverse samples that capture the breadth of human experience. Current attempts to establish generalizability across populations focus on threats to validity, constraints on generalization, and the accumulation of large, cross-cultural data sets. But for continued progress, we also require a framework that lets us determine which inferences can be drawn and how to make informative cross-cultural comparisons. We describe a generative causal-modeling framework and outline simple graphical criteria to derive analytic strategies and implied generalizations. Using both simulated and real data, we demonstrate how to project and compare estimates across populations and further show how to formally represent measurement equivalence or inequivalence across societies. We conclude with a discussion of how a formal framework for generalizability can assist researchers in designing more informative cross-cultural studies and thus provides a more solid foundation for cumulative and generalizable behavioral research.\",\"PeriodicalId\":55645,\"journal\":{\"name\":\"Advances in Methods and Practices in Psychological Science\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2021-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Methods and Practices in Psychological Science\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/25152459221106366\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Methods and Practices in Psychological Science","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/25152459221106366","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY","Score":null,"Total":0}
引用次数: 27

摘要

行为研究人员越来越认识到需要更多样化的样本来捕捉人类经验的广度。目前试图建立跨人群的概括性主要集中在有效性的威胁、概括性的限制以及大型跨文化数据集的积累。但为了继续取得进展,我们还需要一个框架,让我们确定可以得出哪些推论,以及如何进行信息丰富的跨文化比较。我们描述了一个生成的因果建模框架,并概述了简单的图形准则,以导出分析策略和隐含的概括。使用模拟和真实数据,我们演示了如何在人群中预测和比较估计,并进一步展示了如何正式表示跨社会的测量等效或不等价。最后,我们讨论了概括性的正式框架如何帮助研究人员设计更多信息丰富的跨文化研究,从而为累积性和概括性行为研究提供更坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Causal Framework for Cross-Cultural Generalizability
Behavioral researchers increasingly recognize the need for more diverse samples that capture the breadth of human experience. Current attempts to establish generalizability across populations focus on threats to validity, constraints on generalization, and the accumulation of large, cross-cultural data sets. But for continued progress, we also require a framework that lets us determine which inferences can be drawn and how to make informative cross-cultural comparisons. We describe a generative causal-modeling framework and outline simple graphical criteria to derive analytic strategies and implied generalizations. Using both simulated and real data, we demonstrate how to project and compare estimates across populations and further show how to formally represent measurement equivalence or inequivalence across societies. We conclude with a discussion of how a formal framework for generalizability can assist researchers in designing more informative cross-cultural studies and thus provides a more solid foundation for cumulative and generalizable behavioral research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
21.20
自引率
0.70%
发文量
16
期刊介绍: In 2021, Advances in Methods and Practices in Psychological Science will undergo a transition to become an open access journal. This journal focuses on publishing innovative developments in research methods, practices, and conduct within the field of psychological science. It embraces a wide range of areas and topics and encourages the integration of methodological and analytical questions. The aim of AMPPS is to bring the latest methodological advances to researchers from various disciplines, even those who are not methodological experts. Therefore, the journal seeks submissions that are accessible to readers with different research interests and that represent the diverse research trends within the field of psychological science. The types of content that AMPPS welcomes include articles that communicate advancements in methods, practices, and metascience, as well as empirical scientific best practices. Additionally, tutorials, commentaries, and simulation studies on new techniques and research tools are encouraged. The journal also aims to publish papers that bring advances from specialized subfields to a broader audience. Lastly, AMPPS accepts Registered Replication Reports, which focus on replicating important findings from previously published studies. Overall, the transition of Advances in Methods and Practices in Psychological Science to an open access journal aims to increase accessibility and promote the dissemination of new developments in research methods and practices within the field of psychological science.
期刊最新文献
Bayesian Analysis of Cross-Sectional Networks: A Tutorial in R and JASP Conducting Research With People in Lower-Socioeconomic-Status Contexts Keeping Meta-Analyses Alive and Well: A Tutorial on Implementing and Using Community-Augmented Meta-Analyses in PsychOpen CAMA A Practical Guide to Conversation Research: How to Study What People Say to Each Other Impossible Hypotheses and Effect-Size Limits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1