{"title":"聚乙烯烃与再生钢纤维混杂工程地聚合物复合材料的准静态和动态力学性能","authors":"Hui Zhong, Yi Wang, Mingzhong Zhang","doi":"10.3151/jact.21.405","DOIUrl":null,"url":null,"abstract":"Recycled tyre steel (RTS) fibre is favoured as a replacement for industrial steel fibre to reduce the environmental impact and material cost of fibre reinforced cementitious composites as well as a potential substitute for the commonly used polyvinyl alcohol (PVA) fibre to develop sustainable engineered geopolymer composites (EGC). This paper systematically examines the effect of hybrid PVA and RTS fibre dosage on the engineering properties of fly ash-slag based EGC, with special focus on uniaxial tensile behaviour and dynamic compressive and splitting tensile behaviour. Results indicate that combining RTS fibres with PVA fibres can effectively improve the drying shrinkage resistance of EGC. All studied EGC mixes exhibit expected strain-hardening and multiple cracking behaviour under uniaxial tension and about 5% enhancement in tensile strength is captured for EGC when 0.25% PVA fibre is replaced with RTS fibre. The incorporation of RTS fibres can improve the quasi-static compressive strength of EGC up to 31%, as compared to EGC with 2.0% PVA fibre. Replacing 0.25 to 0.5% PVA fibre with RTS fibre is beneficial to the dynamic mechanical properties of EGC, where up to 20% improvement in dynamic splitting tensile strength is found for EGC.","PeriodicalId":14868,"journal":{"name":"Journal of Advanced Concrete Technology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi-static and Dynamic Mechanical Properties of Engineered Geopolymer Composites with Hybrid PVA and Recycled Steel Fibres\",\"authors\":\"Hui Zhong, Yi Wang, Mingzhong Zhang\",\"doi\":\"10.3151/jact.21.405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recycled tyre steel (RTS) fibre is favoured as a replacement for industrial steel fibre to reduce the environmental impact and material cost of fibre reinforced cementitious composites as well as a potential substitute for the commonly used polyvinyl alcohol (PVA) fibre to develop sustainable engineered geopolymer composites (EGC). This paper systematically examines the effect of hybrid PVA and RTS fibre dosage on the engineering properties of fly ash-slag based EGC, with special focus on uniaxial tensile behaviour and dynamic compressive and splitting tensile behaviour. Results indicate that combining RTS fibres with PVA fibres can effectively improve the drying shrinkage resistance of EGC. All studied EGC mixes exhibit expected strain-hardening and multiple cracking behaviour under uniaxial tension and about 5% enhancement in tensile strength is captured for EGC when 0.25% PVA fibre is replaced with RTS fibre. The incorporation of RTS fibres can improve the quasi-static compressive strength of EGC up to 31%, as compared to EGC with 2.0% PVA fibre. Replacing 0.25 to 0.5% PVA fibre with RTS fibre is beneficial to the dynamic mechanical properties of EGC, where up to 20% improvement in dynamic splitting tensile strength is found for EGC.\",\"PeriodicalId\":14868,\"journal\":{\"name\":\"Journal of Advanced Concrete Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Concrete Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3151/jact.21.405\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Concrete Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3151/jact.21.405","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Quasi-static and Dynamic Mechanical Properties of Engineered Geopolymer Composites with Hybrid PVA and Recycled Steel Fibres
Recycled tyre steel (RTS) fibre is favoured as a replacement for industrial steel fibre to reduce the environmental impact and material cost of fibre reinforced cementitious composites as well as a potential substitute for the commonly used polyvinyl alcohol (PVA) fibre to develop sustainable engineered geopolymer composites (EGC). This paper systematically examines the effect of hybrid PVA and RTS fibre dosage on the engineering properties of fly ash-slag based EGC, with special focus on uniaxial tensile behaviour and dynamic compressive and splitting tensile behaviour. Results indicate that combining RTS fibres with PVA fibres can effectively improve the drying shrinkage resistance of EGC. All studied EGC mixes exhibit expected strain-hardening and multiple cracking behaviour under uniaxial tension and about 5% enhancement in tensile strength is captured for EGC when 0.25% PVA fibre is replaced with RTS fibre. The incorporation of RTS fibres can improve the quasi-static compressive strength of EGC up to 31%, as compared to EGC with 2.0% PVA fibre. Replacing 0.25 to 0.5% PVA fibre with RTS fibre is beneficial to the dynamic mechanical properties of EGC, where up to 20% improvement in dynamic splitting tensile strength is found for EGC.
期刊介绍:
JACT is fast. Only 5 to 7 months from submission to publishing thanks to electronic file exchange between you, the reviewers and the editors.
JACT is high quality. Peer-reviewed by internationally renowned experts who return review comments to ensure the highest possible quality.
JACT is transparent. The status of your manuscript from submission to publishing can be viewed on our website, greatly reducing the frustration of being kept in the dark, possibly for over a year in the case of some journals.
JACT is cost-effective. Submission and subscription are free of charge . Full-text PDF files are available for the authors to open at their web sites.
Scope:
*Materials:
-Material properties
-Fresh concrete
-Hardened concrete
-High performance concrete
-Development of new materials
-Fiber reinforcement
*Maintenance and Rehabilitation:
-Durability and repair
-Strengthening/Rehabilitation
-LCC for concrete structures
-Environmant conscious materials
*Structures:
-Design and construction of RC and PC Structures
-Seismic design
-Safety against environmental disasters
-Failure mechanism and non-linear analysis/modeling
-Composite and mixed structures
*Other:
-Monitoring
-Aesthetics of concrete structures
-Other concrete related topics