Fan Zhang, Zhi-Hua Wang, Bei Sun, Yan-kun Huang, Cheng Chen, Jie Hu, Longyan Li, Ping-ping Xia, Z. Ye
{"title":"异丙酚通过阻断LncRNA-MEG3/NF-κB轴,使星形胶质细胞免于lps诱导的炎症反应。","authors":"Fan Zhang, Zhi-Hua Wang, Bei Sun, Yan-kun Huang, Cheng Chen, Jie Hu, Longyan Li, Ping-ping Xia, Z. Ye","doi":"10.2174/1567202619666220316112509","DOIUrl":null,"url":null,"abstract":"OBJECTIVE\nEvidences had demonstrated that propofol attenuated neuro-inflammation following brain ischemia. Moreover, LncRNA-MEG3 was identified as an independent prognostic marker for ischemic stroke patients, and was found to be correlated with cerebral ischemia in animal models. Therefore, the current study explored the role of propofol on lipopolysaccharide (LPS)-mediated inflammation in cultured astrocytes, along with the molecular mechanism involved in LncRNA-MEG3/NF-κB axis.\n\n\nMETHODS\nThe primary cultured astrocytes isolated from rats were used to establish an inflammatory model, which were treated with LPS. Propofol was administrated to the primary cultured astrocytes during LPS treatment. The effect of propofol on pro-inflammatory cytokines and the LncRNA-MEG3/NF-κB pathway were detected by ELISA, qRT-PCR and Western Blot assay, respectively. Then, dual-luciferase assay, chromatin immunoprecipitation and RNA immunoprecipitation were used to determine the interaction between LncRNA-MEG3 and NF-κB.\n\n\nRESULTS\nOur study found that propofol significantly reduced LncRNA-MEG3 expression, which was elevated in LPS-stimulated astrocytes. Moreover, both propofol and LncRNA-MEG3 knockdown remarkably alleviated LPS-induced cytotoxicity by suppressing expressions and release of pro-inflammatory cytokines. Loss of LncRNA-MEG3 notably suppressed the NF-κB activity and its phosphorylated activation. Additionally, it was also observed that LncRNA-MEG3 could bind nuclear p65/p50, and promote the binding of NF-κB to IL-6 and TNF-α promoters in the nucleus, subsequently stimulating the production of inflammatory cytokines in LPS-treated astrocytes. Furthermore, a specific inhibitor of NF-κB, PDTC rescued astrocytes from LPS exposure without affecting LncRNA-MEG3 expression.\n\n\nCONCLUSION\nThese findings demonstrated that LncRNA-MEG3 acted as a positive regulator of NF-κB, mediated the neuroprotection of propofol in LPS-triggered astrocytes injury.","PeriodicalId":10879,"journal":{"name":"Current neurovascular research","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Propofol rescued astrocytes from LPS-induced inflammatory response via blocking LncRNA-MEG3/NF-κB axis.\",\"authors\":\"Fan Zhang, Zhi-Hua Wang, Bei Sun, Yan-kun Huang, Cheng Chen, Jie Hu, Longyan Li, Ping-ping Xia, Z. Ye\",\"doi\":\"10.2174/1567202619666220316112509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"OBJECTIVE\\nEvidences had demonstrated that propofol attenuated neuro-inflammation following brain ischemia. Moreover, LncRNA-MEG3 was identified as an independent prognostic marker for ischemic stroke patients, and was found to be correlated with cerebral ischemia in animal models. Therefore, the current study explored the role of propofol on lipopolysaccharide (LPS)-mediated inflammation in cultured astrocytes, along with the molecular mechanism involved in LncRNA-MEG3/NF-κB axis.\\n\\n\\nMETHODS\\nThe primary cultured astrocytes isolated from rats were used to establish an inflammatory model, which were treated with LPS. Propofol was administrated to the primary cultured astrocytes during LPS treatment. The effect of propofol on pro-inflammatory cytokines and the LncRNA-MEG3/NF-κB pathway were detected by ELISA, qRT-PCR and Western Blot assay, respectively. Then, dual-luciferase assay, chromatin immunoprecipitation and RNA immunoprecipitation were used to determine the interaction between LncRNA-MEG3 and NF-κB.\\n\\n\\nRESULTS\\nOur study found that propofol significantly reduced LncRNA-MEG3 expression, which was elevated in LPS-stimulated astrocytes. Moreover, both propofol and LncRNA-MEG3 knockdown remarkably alleviated LPS-induced cytotoxicity by suppressing expressions and release of pro-inflammatory cytokines. Loss of LncRNA-MEG3 notably suppressed the NF-κB activity and its phosphorylated activation. Additionally, it was also observed that LncRNA-MEG3 could bind nuclear p65/p50, and promote the binding of NF-κB to IL-6 and TNF-α promoters in the nucleus, subsequently stimulating the production of inflammatory cytokines in LPS-treated astrocytes. Furthermore, a specific inhibitor of NF-κB, PDTC rescued astrocytes from LPS exposure without affecting LncRNA-MEG3 expression.\\n\\n\\nCONCLUSION\\nThese findings demonstrated that LncRNA-MEG3 acted as a positive regulator of NF-κB, mediated the neuroprotection of propofol in LPS-triggered astrocytes injury.\",\"PeriodicalId\":10879,\"journal\":{\"name\":\"Current neurovascular research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current neurovascular research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/1567202619666220316112509\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current neurovascular research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1567202619666220316112509","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Propofol rescued astrocytes from LPS-induced inflammatory response via blocking LncRNA-MEG3/NF-κB axis.
OBJECTIVE
Evidences had demonstrated that propofol attenuated neuro-inflammation following brain ischemia. Moreover, LncRNA-MEG3 was identified as an independent prognostic marker for ischemic stroke patients, and was found to be correlated with cerebral ischemia in animal models. Therefore, the current study explored the role of propofol on lipopolysaccharide (LPS)-mediated inflammation in cultured astrocytes, along with the molecular mechanism involved in LncRNA-MEG3/NF-κB axis.
METHODS
The primary cultured astrocytes isolated from rats were used to establish an inflammatory model, which were treated with LPS. Propofol was administrated to the primary cultured astrocytes during LPS treatment. The effect of propofol on pro-inflammatory cytokines and the LncRNA-MEG3/NF-κB pathway were detected by ELISA, qRT-PCR and Western Blot assay, respectively. Then, dual-luciferase assay, chromatin immunoprecipitation and RNA immunoprecipitation were used to determine the interaction between LncRNA-MEG3 and NF-κB.
RESULTS
Our study found that propofol significantly reduced LncRNA-MEG3 expression, which was elevated in LPS-stimulated astrocytes. Moreover, both propofol and LncRNA-MEG3 knockdown remarkably alleviated LPS-induced cytotoxicity by suppressing expressions and release of pro-inflammatory cytokines. Loss of LncRNA-MEG3 notably suppressed the NF-κB activity and its phosphorylated activation. Additionally, it was also observed that LncRNA-MEG3 could bind nuclear p65/p50, and promote the binding of NF-κB to IL-6 and TNF-α promoters in the nucleus, subsequently stimulating the production of inflammatory cytokines in LPS-treated astrocytes. Furthermore, a specific inhibitor of NF-κB, PDTC rescued astrocytes from LPS exposure without affecting LncRNA-MEG3 expression.
CONCLUSION
These findings demonstrated that LncRNA-MEG3 acted as a positive regulator of NF-κB, mediated the neuroprotection of propofol in LPS-triggered astrocytes injury.
期刊介绍:
Current Neurovascular Research provides a cross platform for the publication of scientifically rigorous research that addresses disease mechanisms of both neuronal and vascular origins in neuroscience. The journal serves as an international forum publishing novel and original work as well as timely neuroscience research articles, full-length/mini reviews in the disciplines of cell developmental disorders, plasticity, and degeneration that bridges the gap between basic science research and clinical discovery. Current Neurovascular Research emphasizes the elucidation of disease mechanisms, both cellular and molecular, which can impact the development of unique therapeutic strategies for neuronal and vascular disorders.