{"title":"用修正拉普拉斯Adomian分解法求解Volterra积分和积分微分方程","authors":"D. Rani, V. Mishra","doi":"10.2478/jamsi-2019-0001","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, an effectual and new modification in Laplace Adomian decomposition method based on Bernstein polynomials is proposed to find the solution of nonlinear Volterra integral and integro-differential equations. The performance and capability of the proposed idea is endorsed by comparing the exact and approximate solutions for three different examples on Volterra integral, integro-differential equations of the first and second kinds. The results shown through tables and figures demonstrate the accuracy of our method. It is concluded here that the non orthogonal polynomials can also be used for Laplace Adomian decomposition method. In addition, convergence analysis of the modified technique is also presented.","PeriodicalId":43016,"journal":{"name":"Journal of Applied Mathematics Statistics and Informatics","volume":"15 1","pages":"18 - 5"},"PeriodicalIF":0.3000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2478/jamsi-2019-0001","citationCount":"12","resultStr":"{\"title\":\"Solutions of Volterra integral and integro-differential equations using modified Laplace Adomian decomposition method\",\"authors\":\"D. Rani, V. Mishra\",\"doi\":\"10.2478/jamsi-2019-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, an effectual and new modification in Laplace Adomian decomposition method based on Bernstein polynomials is proposed to find the solution of nonlinear Volterra integral and integro-differential equations. The performance and capability of the proposed idea is endorsed by comparing the exact and approximate solutions for three different examples on Volterra integral, integro-differential equations of the first and second kinds. The results shown through tables and figures demonstrate the accuracy of our method. It is concluded here that the non orthogonal polynomials can also be used for Laplace Adomian decomposition method. In addition, convergence analysis of the modified technique is also presented.\",\"PeriodicalId\":43016,\"journal\":{\"name\":\"Journal of Applied Mathematics Statistics and Informatics\",\"volume\":\"15 1\",\"pages\":\"18 - 5\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2478/jamsi-2019-0001\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics Statistics and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/jamsi-2019-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics Statistics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jamsi-2019-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Solutions of Volterra integral and integro-differential equations using modified Laplace Adomian decomposition method
Abstract In this paper, an effectual and new modification in Laplace Adomian decomposition method based on Bernstein polynomials is proposed to find the solution of nonlinear Volterra integral and integro-differential equations. The performance and capability of the proposed idea is endorsed by comparing the exact and approximate solutions for three different examples on Volterra integral, integro-differential equations of the first and second kinds. The results shown through tables and figures demonstrate the accuracy of our method. It is concluded here that the non orthogonal polynomials can also be used for Laplace Adomian decomposition method. In addition, convergence analysis of the modified technique is also presented.