{"title":"ZyPR:端到端构建工具和运行时管理器,用于FPGA soc的边缘部分重新配置","authors":"Alex R. Bucknall, Suhaib A. Fahmy","doi":"10.1145/3585521","DOIUrl":null,"url":null,"abstract":"Partial reconfiguration (PR) is a key enabler to the design and development of adaptive systems on modern Field Programmable Gate Array (FPGA) Systems-on-Chip (SoCs), allowing hardware to be adapted dynamically at runtime. Vendor-supported PR infrastructure is performance-limited and blocking, drivers entail complex memory management, and software/hardware design requires bespoke knowledge of the underlying hardware. This article presents ZyPR: a complete end-to-end framework that provides high-performance reconfiguration of hardware from within a software abstraction in the Linux userspace, automating the process of building PR applications with support for the Xilinx Zynq and Zynq UltraScale+ architectures, aimed at enabling non-expert application designers to leverage PR for edge applications. We compare ZyPR against traditional vendor tooling for PR management as well as recent open source tools that support PR under Linux. The framework provides a high-performance runtime along with low overhead for its provided abstractions. We introduce improvements to our previous work, increasing the provisioning throughput for PR bitstreams on the Zynq Ultrascale+ by 2× and 5.4× compared to Xilinx’s FPGA Manager.","PeriodicalId":49248,"journal":{"name":"ACM Transactions on Reconfigurable Technology and Systems","volume":"16 1","pages":"1 - 33"},"PeriodicalIF":3.1000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"ZyPR: End-to-end Build Tool and Runtime Manager for Partial Reconfiguration of FPGA SoCs at the Edge\",\"authors\":\"Alex R. Bucknall, Suhaib A. Fahmy\",\"doi\":\"10.1145/3585521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Partial reconfiguration (PR) is a key enabler to the design and development of adaptive systems on modern Field Programmable Gate Array (FPGA) Systems-on-Chip (SoCs), allowing hardware to be adapted dynamically at runtime. Vendor-supported PR infrastructure is performance-limited and blocking, drivers entail complex memory management, and software/hardware design requires bespoke knowledge of the underlying hardware. This article presents ZyPR: a complete end-to-end framework that provides high-performance reconfiguration of hardware from within a software abstraction in the Linux userspace, automating the process of building PR applications with support for the Xilinx Zynq and Zynq UltraScale+ architectures, aimed at enabling non-expert application designers to leverage PR for edge applications. We compare ZyPR against traditional vendor tooling for PR management as well as recent open source tools that support PR under Linux. The framework provides a high-performance runtime along with low overhead for its provided abstractions. We introduce improvements to our previous work, increasing the provisioning throughput for PR bitstreams on the Zynq Ultrascale+ by 2× and 5.4× compared to Xilinx’s FPGA Manager.\",\"PeriodicalId\":49248,\"journal\":{\"name\":\"ACM Transactions on Reconfigurable Technology and Systems\",\"volume\":\"16 1\",\"pages\":\"1 - 33\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Reconfigurable Technology and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3585521\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Reconfigurable Technology and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3585521","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
ZyPR: End-to-end Build Tool and Runtime Manager for Partial Reconfiguration of FPGA SoCs at the Edge
Partial reconfiguration (PR) is a key enabler to the design and development of adaptive systems on modern Field Programmable Gate Array (FPGA) Systems-on-Chip (SoCs), allowing hardware to be adapted dynamically at runtime. Vendor-supported PR infrastructure is performance-limited and blocking, drivers entail complex memory management, and software/hardware design requires bespoke knowledge of the underlying hardware. This article presents ZyPR: a complete end-to-end framework that provides high-performance reconfiguration of hardware from within a software abstraction in the Linux userspace, automating the process of building PR applications with support for the Xilinx Zynq and Zynq UltraScale+ architectures, aimed at enabling non-expert application designers to leverage PR for edge applications. We compare ZyPR against traditional vendor tooling for PR management as well as recent open source tools that support PR under Linux. The framework provides a high-performance runtime along with low overhead for its provided abstractions. We introduce improvements to our previous work, increasing the provisioning throughput for PR bitstreams on the Zynq Ultrascale+ by 2× and 5.4× compared to Xilinx’s FPGA Manager.
期刊介绍:
TRETS is the top journal focusing on research in, on, and with reconfigurable systems and on their underlying technology. The scope, rationale, and coverage by other journals are often limited to particular aspects of reconfigurable technology or reconfigurable systems. TRETS is a journal that covers reconfigurability in its own right.
Topics that would be appropriate for TRETS would include all levels of reconfigurable system abstractions and all aspects of reconfigurable technology including platforms, programming environments and application successes that support these systems for computing or other applications.
-The board and systems architectures of a reconfigurable platform.
-Programming environments of reconfigurable systems, especially those designed for use with reconfigurable systems that will lead to increased programmer productivity.
-Languages and compilers for reconfigurable systems.
-Logic synthesis and related tools, as they relate to reconfigurable systems.
-Applications on which success can be demonstrated.
The underlying technology from which reconfigurable systems are developed. (Currently this technology is that of FPGAs, but research on the nature and use of follow-on technologies is appropriate for TRETS.)
In considering whether a paper is suitable for TRETS, the foremost question should be whether reconfigurability has been essential to success. Topics such as architecture, programming languages, compilers, and environments, logic synthesis, and high performance applications are all suitable if the context is appropriate. For example, an architecture for an embedded application that happens to use FPGAs is not necessarily suitable for TRETS, but an architecture using FPGAs for which the reconfigurability of the FPGAs is an inherent part of the specifications (perhaps due to a need for re-use on multiple applications) would be appropriate for TRETS.