{"title":"基于土耳其和英语推文的新冠肺炎大流行期间公共议程的非负矩阵因子分析和假设检验","authors":"Mustafa Yavaş, A. Guran, Y. Ekinci","doi":"10.5755/j02.eie.31196","DOIUrl":null,"url":null,"abstract":"In this study, Turkish and English tweets through Twitter Application Program Interface (API) between 1-31 January 2021 are analyzed with respect to Covid-19. The collected tweets are preprocessed, labeled with the Vader Sentiment library, and then analyzed by topic modeling with Nonnegative Matrix Factorization. The analysis show that the most frequently mentioned word is “vaccine/aşı” after “Covid”. The topics modelled in the study are grouped into themes and the themes are seen to be similar in both languages, which means that the Turkish and world agenda are not very different in terms of themes in pandemics. Moreover, hypothesis tests are conducted to understand whether language and time period are related to sentiment class. The results show that the Turkish people are more neutral about the Covid-19 issue than other people in the world during the given period of time. Moreover, independent of the language, there are more negative and neutral tweets in the first half of January 2021, whereas there are more positive tweets in the second half of the month. To the best of our knowledge, this is the first study to analyze Covid-19 related tweets in two languages to compare the local and global agendas using topic modeling, sentiment analysis, and hypothesis testing methods.","PeriodicalId":51031,"journal":{"name":"Elektronika Ir Elektrotechnika","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Public Agenda during Covid-19 Pandemics Based on Turkish and English Tweets Using Nonnegative Matrix Factorization and Hypothesis Testing\",\"authors\":\"Mustafa Yavaş, A. Guran, Y. Ekinci\",\"doi\":\"10.5755/j02.eie.31196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, Turkish and English tweets through Twitter Application Program Interface (API) between 1-31 January 2021 are analyzed with respect to Covid-19. The collected tweets are preprocessed, labeled with the Vader Sentiment library, and then analyzed by topic modeling with Nonnegative Matrix Factorization. The analysis show that the most frequently mentioned word is “vaccine/aşı” after “Covid”. The topics modelled in the study are grouped into themes and the themes are seen to be similar in both languages, which means that the Turkish and world agenda are not very different in terms of themes in pandemics. Moreover, hypothesis tests are conducted to understand whether language and time period are related to sentiment class. The results show that the Turkish people are more neutral about the Covid-19 issue than other people in the world during the given period of time. Moreover, independent of the language, there are more negative and neutral tweets in the first half of January 2021, whereas there are more positive tweets in the second half of the month. To the best of our knowledge, this is the first study to analyze Covid-19 related tweets in two languages to compare the local and global agendas using topic modeling, sentiment analysis, and hypothesis testing methods.\",\"PeriodicalId\":51031,\"journal\":{\"name\":\"Elektronika Ir Elektrotechnika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elektronika Ir Elektrotechnika\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5755/j02.eie.31196\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elektronika Ir Elektrotechnika","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5755/j02.eie.31196","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Analysis of Public Agenda during Covid-19 Pandemics Based on Turkish and English Tweets Using Nonnegative Matrix Factorization and Hypothesis Testing
In this study, Turkish and English tweets through Twitter Application Program Interface (API) between 1-31 January 2021 are analyzed with respect to Covid-19. The collected tweets are preprocessed, labeled with the Vader Sentiment library, and then analyzed by topic modeling with Nonnegative Matrix Factorization. The analysis show that the most frequently mentioned word is “vaccine/aşı” after “Covid”. The topics modelled in the study are grouped into themes and the themes are seen to be similar in both languages, which means that the Turkish and world agenda are not very different in terms of themes in pandemics. Moreover, hypothesis tests are conducted to understand whether language and time period are related to sentiment class. The results show that the Turkish people are more neutral about the Covid-19 issue than other people in the world during the given period of time. Moreover, independent of the language, there are more negative and neutral tweets in the first half of January 2021, whereas there are more positive tweets in the second half of the month. To the best of our knowledge, this is the first study to analyze Covid-19 related tweets in two languages to compare the local and global agendas using topic modeling, sentiment analysis, and hypothesis testing methods.
期刊介绍:
The journal aims to attract original research papers on featuring practical developments in the field of electronics and electrical engineering. The journal seeks to publish research progress in the field of electronics and electrical engineering with an emphasis on the applied rather than the theoretical in as much detail as possible.
The journal publishes regular papers dealing with the following areas, but not limited to:
Electronics;
Electronic Measurements;
Signal Technology;
Microelectronics;
High Frequency Technology, Microwaves.
Electrical Engineering;
Renewable Energy;
Automation, Robotics;
Telecommunications Engineering.