Mark T.D. Cronin , Nicoleta Spînu , Andrew P. Worth
{"title":"社论:qAOPs会使毒理学现代化吗?","authors":"Mark T.D. Cronin , Nicoleta Spînu , Andrew P. Worth","doi":"10.1016/j.comtox.2021.100199","DOIUrl":null,"url":null,"abstract":"<div><p>In this editorial we reflect on the past decade of developments in predictive toxicology, and in particular on the evolution of the Adverse Outcome Pathway (AOP) paradigm. Starting out as a concept, AOPs have become the focal point of a community of scientists, regulators and decision-makers. AOPs provide the mechanistic knowledge underpinning the development of Integrated Approaches to Testing and Assessment (IATA), including computational models now referred to as quantitative AOPs (qAOPs). With reference to recent and related works on qAOPs, we take a brief historical perspective and ask what is the next stage in modernising chemical toxicology beyond animal testing.</p></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":"21 ","pages":"Article 100199"},"PeriodicalIF":3.1000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468111321000451/pdfft?md5=0927eedbfc1ef0325eeb1d7b1bf62ec9&pid=1-s2.0-S2468111321000451-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Will qAOPs modernise toxicology?\",\"authors\":\"Mark T.D. Cronin , Nicoleta Spînu , Andrew P. Worth\",\"doi\":\"10.1016/j.comtox.2021.100199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this editorial we reflect on the past decade of developments in predictive toxicology, and in particular on the evolution of the Adverse Outcome Pathway (AOP) paradigm. Starting out as a concept, AOPs have become the focal point of a community of scientists, regulators and decision-makers. AOPs provide the mechanistic knowledge underpinning the development of Integrated Approaches to Testing and Assessment (IATA), including computational models now referred to as quantitative AOPs (qAOPs). With reference to recent and related works on qAOPs, we take a brief historical perspective and ask what is the next stage in modernising chemical toxicology beyond animal testing.</p></div>\",\"PeriodicalId\":37651,\"journal\":{\"name\":\"Computational Toxicology\",\"volume\":\"21 \",\"pages\":\"Article 100199\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468111321000451/pdfft?md5=0927eedbfc1ef0325eeb1d7b1bf62ec9&pid=1-s2.0-S2468111321000451-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468111321000451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468111321000451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
In this editorial we reflect on the past decade of developments in predictive toxicology, and in particular on the evolution of the Adverse Outcome Pathway (AOP) paradigm. Starting out as a concept, AOPs have become the focal point of a community of scientists, regulators and decision-makers. AOPs provide the mechanistic knowledge underpinning the development of Integrated Approaches to Testing and Assessment (IATA), including computational models now referred to as quantitative AOPs (qAOPs). With reference to recent and related works on qAOPs, we take a brief historical perspective and ask what is the next stage in modernising chemical toxicology beyond animal testing.
期刊介绍:
Computational Toxicology is an international journal publishing computational approaches that assist in the toxicological evaluation of new and existing chemical substances assisting in their safety assessment. -All effects relating to human health and environmental toxicity and fate -Prediction of toxicity, metabolism, fate and physico-chemical properties -The development of models from read-across, (Q)SARs, PBPK, QIVIVE, Multi-Scale Models -Big Data in toxicology: integration, management, analysis -Implementation of models through AOPs, IATA, TTC -Regulatory acceptance of models: evaluation, verification and validation -From metals, to small organic molecules to nanoparticles -Pharmaceuticals, pesticides, foods, cosmetics, fine chemicals -Bringing together the views of industry, regulators, academia, NGOs