L-Box试验中新混凝土流动的CFD数值模拟

IF 1.8 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Magazine of Concrete Research Pub Date : 2023-08-01 DOI:10.1680/jmacr.23.00032
Raoudha Sassi, A. Jelidi, S. Montassar
{"title":"L-Box试验中新混凝土流动的CFD数值模拟","authors":"Raoudha Sassi, A. Jelidi, S. Montassar","doi":"10.1680/jmacr.23.00032","DOIUrl":null,"url":null,"abstract":"Concrete remains a widely used material in construction. As structures become more optimized, a deeper understanding of the rheology of the concrete mixture is necessary. This paper aims to numerically simulate the flow of fresh concrete in the L-box apparatus, with the objective of gaining insights into its rheological behavior and predicting its properties. The fresh concrete flowing through the L-Box test is simulated from the moment that the gate is lifted until the stoppage and the material takes its final shape. The flow in this tool occurs on a free surface. In this work, a three-dimensional model has been developed using the computational fluid dynamics (CFD) technique for simulation. The flow behavior of fresh concrete was assumed to be non-Newtonian following the Bingham law, characterized by a non-linear shear-strain rate ratio, yield stress, and plastic viscosity. A set of numerical simulations by varying workability were conducted. Furthermore, a parametric study was conducted to examine the impact of introduced parameters in the concrete flow, including the effect of yield stress, viscosity, and density.","PeriodicalId":18113,"journal":{"name":"Magazine of Concrete Research","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulations of fresh concrete flow in the L-Box test using CFD\",\"authors\":\"Raoudha Sassi, A. Jelidi, S. Montassar\",\"doi\":\"10.1680/jmacr.23.00032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Concrete remains a widely used material in construction. As structures become more optimized, a deeper understanding of the rheology of the concrete mixture is necessary. This paper aims to numerically simulate the flow of fresh concrete in the L-box apparatus, with the objective of gaining insights into its rheological behavior and predicting its properties. The fresh concrete flowing through the L-Box test is simulated from the moment that the gate is lifted until the stoppage and the material takes its final shape. The flow in this tool occurs on a free surface. In this work, a three-dimensional model has been developed using the computational fluid dynamics (CFD) technique for simulation. The flow behavior of fresh concrete was assumed to be non-Newtonian following the Bingham law, characterized by a non-linear shear-strain rate ratio, yield stress, and plastic viscosity. A set of numerical simulations by varying workability were conducted. Furthermore, a parametric study was conducted to examine the impact of introduced parameters in the concrete flow, including the effect of yield stress, viscosity, and density.\",\"PeriodicalId\":18113,\"journal\":{\"name\":\"Magazine of Concrete Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magazine of Concrete Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/jmacr.23.00032\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magazine of Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jmacr.23.00032","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

混凝土仍然是建筑中广泛使用的材料。随着结构变得更加优化,对混凝土混合物的流变学有更深入的了解是必要的。本文旨在数值模拟新混凝土在L-box装置中的流动,目的是深入了解其流变行为并预测其性能。通过L-Box试验的新鲜混凝土从闸门抬起的那一刻开始模拟,直到停止,材料形成最终形状。该工具中的流动发生在自由表面上。在这项工作中,利用计算流体力学(CFD)技术建立了一个三维模型进行模拟。假设新拌混凝土的流动行为遵循Bingham定律,具有非线性剪切应变率比、屈服应力和塑性粘度的特征。进行了不同工作性条件下的数值模拟。此外,还进行了参数化研究,以检验引入参数对混凝土流动的影响,包括屈服应力、粘度和密度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical simulations of fresh concrete flow in the L-Box test using CFD
Concrete remains a widely used material in construction. As structures become more optimized, a deeper understanding of the rheology of the concrete mixture is necessary. This paper aims to numerically simulate the flow of fresh concrete in the L-box apparatus, with the objective of gaining insights into its rheological behavior and predicting its properties. The fresh concrete flowing through the L-Box test is simulated from the moment that the gate is lifted until the stoppage and the material takes its final shape. The flow in this tool occurs on a free surface. In this work, a three-dimensional model has been developed using the computational fluid dynamics (CFD) technique for simulation. The flow behavior of fresh concrete was assumed to be non-Newtonian following the Bingham law, characterized by a non-linear shear-strain rate ratio, yield stress, and plastic viscosity. A set of numerical simulations by varying workability were conducted. Furthermore, a parametric study was conducted to examine the impact of introduced parameters in the concrete flow, including the effect of yield stress, viscosity, and density.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Magazine of Concrete Research
Magazine of Concrete Research 工程技术-材料科学:综合
CiteScore
4.60
自引率
11.10%
发文量
102
审稿时长
5 months
期刊介绍: For concrete and other cementitious derivatives to be developed further, we need to understand the use of alternative hydraulically active materials used in combination with plain Portland Cement, sustainability and durability issues. Both fundamental and best practice issues need to be addressed. Magazine of Concrete Research covers every aspect of concrete manufacture and behaviour from performance and evaluation of constituent materials to mix design, testing, durability, structural analysis and composite construction.
期刊最新文献
Characterisation proposal of direct shear strength of steel fibre-reinforced concrete Punching shear tests and design of UHTCC-enhanced RC slab-column joints with shear reinforcements Engineering and microstructural properties of self-compacting concrete containing coarse recycled concrete aggregate Modelling chloride diffusion in concrete with carbonated surface layer Shear friction capacity of monolithic construction joints reinforced with self-prestressing reinforcing steel bars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1