{"title":"大规模的系统社会观察:使用众包和计算机视觉来测量可见的邻里条件","authors":"Jackelyn Hwang, Nikhil Naik","doi":"10.1177/00811750231160781","DOIUrl":null,"url":null,"abstract":"Analysis of neighborhood environments is important for understanding inequality. Few studies, however, use direct measures of the visible characteristics of neighborhood conditions, despite their theorized importance in shaping individual and community well-being, because collecting data on the physical conditions of places across neighborhoods and cities and over time has required extensive time and labor. The authors introduce systematic social observation at scale (SSO@S), a pipeline for using visual data, crowdsourcing, and computer vision to identify visible characteristics of neighborhoods at a large scale. The authors implement SSO@S on millions of street-level images across three physically distinct cities—Boston, Detroit, and Los Angeles—from 2007 to 2020 to identify trash across space and over time. The authors evaluate the extent to which this approach can be used to assist with systematic coding of street-level imagery through cross-validation and out-of-sample validation, class-activation mapping, and comparisons with other sources of observed neighborhood characteristics. The SSO@S approach produces estimates with high reliability that correlate with some expected demographic characteristics but not others, depending on the city. The authors conclude with an assessment of this approach for measuring visible characteristics of neighborhoods and the implications for methods and research.","PeriodicalId":48140,"journal":{"name":"Sociological Methodology","volume":"53 1","pages":"183 - 216"},"PeriodicalIF":2.4000,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Systematic Social Observation at Scale: Using Crowdsourcing and Computer Vision to Measure Visible Neighborhood Conditions\",\"authors\":\"Jackelyn Hwang, Nikhil Naik\",\"doi\":\"10.1177/00811750231160781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analysis of neighborhood environments is important for understanding inequality. Few studies, however, use direct measures of the visible characteristics of neighborhood conditions, despite their theorized importance in shaping individual and community well-being, because collecting data on the physical conditions of places across neighborhoods and cities and over time has required extensive time and labor. The authors introduce systematic social observation at scale (SSO@S), a pipeline for using visual data, crowdsourcing, and computer vision to identify visible characteristics of neighborhoods at a large scale. The authors implement SSO@S on millions of street-level images across three physically distinct cities—Boston, Detroit, and Los Angeles—from 2007 to 2020 to identify trash across space and over time. The authors evaluate the extent to which this approach can be used to assist with systematic coding of street-level imagery through cross-validation and out-of-sample validation, class-activation mapping, and comparisons with other sources of observed neighborhood characteristics. The SSO@S approach produces estimates with high reliability that correlate with some expected demographic characteristics but not others, depending on the city. The authors conclude with an assessment of this approach for measuring visible characteristics of neighborhoods and the implications for methods and research.\",\"PeriodicalId\":48140,\"journal\":{\"name\":\"Sociological Methodology\",\"volume\":\"53 1\",\"pages\":\"183 - 216\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sociological Methodology\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1177/00811750231160781\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sociological Methodology","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/00811750231160781","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIOLOGY","Score":null,"Total":0}
Systematic Social Observation at Scale: Using Crowdsourcing and Computer Vision to Measure Visible Neighborhood Conditions
Analysis of neighborhood environments is important for understanding inequality. Few studies, however, use direct measures of the visible characteristics of neighborhood conditions, despite their theorized importance in shaping individual and community well-being, because collecting data on the physical conditions of places across neighborhoods and cities and over time has required extensive time and labor. The authors introduce systematic social observation at scale (SSO@S), a pipeline for using visual data, crowdsourcing, and computer vision to identify visible characteristics of neighborhoods at a large scale. The authors implement SSO@S on millions of street-level images across three physically distinct cities—Boston, Detroit, and Los Angeles—from 2007 to 2020 to identify trash across space and over time. The authors evaluate the extent to which this approach can be used to assist with systematic coding of street-level imagery through cross-validation and out-of-sample validation, class-activation mapping, and comparisons with other sources of observed neighborhood characteristics. The SSO@S approach produces estimates with high reliability that correlate with some expected demographic characteristics but not others, depending on the city. The authors conclude with an assessment of this approach for measuring visible characteristics of neighborhoods and the implications for methods and research.
期刊介绍:
Sociological Methodology is a compendium of new and sometimes controversial advances in social science methodology. Contributions come from diverse areas and have something useful -- and often surprising -- to say about a wide range of topics ranging from legal and ethical issues surrounding data collection to the methodology of theory construction. In short, Sociological Methodology holds something of value -- and an interesting mix of lively controversy, too -- for nearly everyone who participates in the enterprise of sociological research.