{"title":"装配模型辅助下基于双确认的异物碎片视觉检测方法","authors":"Feifei Kong, Delong Zhao, Fuzhou Du","doi":"10.1139/tcsme-2022-0143","DOIUrl":null,"url":null,"abstract":"Foreign object debris (FOD) impacts significantly on the quality control during product assembly because it usually causes product failure. The vision-based method as a nondestructive and efficient technology has become an important approach to FOD detection. However, it faces two important challenges: (1) inexhaustible types (almost any object can become FOD) and (2) unpredictable locations (FOD can appear almost anywhere on surface of a product). Therefore, this paper proposes an FOD visual detection method based on doubt–confirmation strategy and aided by assembly models. Firstly, a coarse-to-fine method is designed for feature extraction and registration to align the test image with the reference image. Then, to solve the unpredictable location problem, different types of suspected FOD are extracted from the test image by a combined method of supervision and nonsupervision. Finally, to solve the inexhaustible type problem, an image comparison method based on a Histogram of Line Direction Angle is proposed, and re-recognition rules of suspected FOD established to complete the final discrimination. Experiments are conducted on a product with complex shape, and the results demonstrate the effectiveness and efficiency of our approach.","PeriodicalId":23285,"journal":{"name":"Transactions of The Canadian Society for Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A doubt–confirmation-based visual detection method for foreign object debris aided by assembly models\",\"authors\":\"Feifei Kong, Delong Zhao, Fuzhou Du\",\"doi\":\"10.1139/tcsme-2022-0143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Foreign object debris (FOD) impacts significantly on the quality control during product assembly because it usually causes product failure. The vision-based method as a nondestructive and efficient technology has become an important approach to FOD detection. However, it faces two important challenges: (1) inexhaustible types (almost any object can become FOD) and (2) unpredictable locations (FOD can appear almost anywhere on surface of a product). Therefore, this paper proposes an FOD visual detection method based on doubt–confirmation strategy and aided by assembly models. Firstly, a coarse-to-fine method is designed for feature extraction and registration to align the test image with the reference image. Then, to solve the unpredictable location problem, different types of suspected FOD are extracted from the test image by a combined method of supervision and nonsupervision. Finally, to solve the inexhaustible type problem, an image comparison method based on a Histogram of Line Direction Angle is proposed, and re-recognition rules of suspected FOD established to complete the final discrimination. Experiments are conducted on a product with complex shape, and the results demonstrate the effectiveness and efficiency of our approach.\",\"PeriodicalId\":23285,\"journal\":{\"name\":\"Transactions of The Canadian Society for Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of The Canadian Society for Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1139/tcsme-2022-0143\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of The Canadian Society for Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1139/tcsme-2022-0143","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A doubt–confirmation-based visual detection method for foreign object debris aided by assembly models
Foreign object debris (FOD) impacts significantly on the quality control during product assembly because it usually causes product failure. The vision-based method as a nondestructive and efficient technology has become an important approach to FOD detection. However, it faces two important challenges: (1) inexhaustible types (almost any object can become FOD) and (2) unpredictable locations (FOD can appear almost anywhere on surface of a product). Therefore, this paper proposes an FOD visual detection method based on doubt–confirmation strategy and aided by assembly models. Firstly, a coarse-to-fine method is designed for feature extraction and registration to align the test image with the reference image. Then, to solve the unpredictable location problem, different types of suspected FOD are extracted from the test image by a combined method of supervision and nonsupervision. Finally, to solve the inexhaustible type problem, an image comparison method based on a Histogram of Line Direction Angle is proposed, and re-recognition rules of suspected FOD established to complete the final discrimination. Experiments are conducted on a product with complex shape, and the results demonstrate the effectiveness and efficiency of our approach.
期刊介绍:
Published since 1972, Transactions of the Canadian Society for Mechanical Engineering is a quarterly journal that publishes comprehensive research articles and notes in the broad field of mechanical engineering. New advances in energy systems, biomechanics, engineering analysis and design, environmental engineering, materials technology, advanced manufacturing, mechatronics, MEMS, nanotechnology, thermo-fluids engineering, and transportation systems are featured.