{"title":"全身振动生物动力学综述:1 .实验生物动力学","authors":"S. Rakheja, K. Dewangan, R. Dong, P. Marcotte","doi":"10.1504/ijvp.2020.10026219","DOIUrl":null,"url":null,"abstract":"In the framework of whole-body vibration (WBV), biodynamics refers to biomechanical responses of the human body to impressed oscillatory forces or motions. The biodynamic responses of the human body to WBV form an essential basis for an understanding of mechanical-equivalent properties of the body and potential injury mechanisms, developments in frequency-weightings and design tools of systems coupled with the human operator. In this first part, the biodynamic responses obtained experimentally in terms of to-the-body and through-the-body functions, are critically reviewed and discussed to highlight influences of various contributory factors, such as those related to posture, body support, anthropometry and nature of vibration, together with the range of experimental conditions. The reported data invariably show highly complex, nonlinear and coupled effects of the majority of the contributory factors. It is shown that the reported studies often conclude conflicting effects of many factors, such as posture, gender, vibration and support conditions.","PeriodicalId":52169,"journal":{"name":"International Journal of Vehicle Performance","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Whole-body vibration biodynamics - a critical review: I. Experimental biodynamics\",\"authors\":\"S. Rakheja, K. Dewangan, R. Dong, P. Marcotte\",\"doi\":\"10.1504/ijvp.2020.10026219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the framework of whole-body vibration (WBV), biodynamics refers to biomechanical responses of the human body to impressed oscillatory forces or motions. The biodynamic responses of the human body to WBV form an essential basis for an understanding of mechanical-equivalent properties of the body and potential injury mechanisms, developments in frequency-weightings and design tools of systems coupled with the human operator. In this first part, the biodynamic responses obtained experimentally in terms of to-the-body and through-the-body functions, are critically reviewed and discussed to highlight influences of various contributory factors, such as those related to posture, body support, anthropometry and nature of vibration, together with the range of experimental conditions. The reported data invariably show highly complex, nonlinear and coupled effects of the majority of the contributory factors. It is shown that the reported studies often conclude conflicting effects of many factors, such as posture, gender, vibration and support conditions.\",\"PeriodicalId\":52169,\"journal\":{\"name\":\"International Journal of Vehicle Performance\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Vehicle Performance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijvp.2020.10026219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijvp.2020.10026219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Whole-body vibration biodynamics - a critical review: I. Experimental biodynamics
In the framework of whole-body vibration (WBV), biodynamics refers to biomechanical responses of the human body to impressed oscillatory forces or motions. The biodynamic responses of the human body to WBV form an essential basis for an understanding of mechanical-equivalent properties of the body and potential injury mechanisms, developments in frequency-weightings and design tools of systems coupled with the human operator. In this first part, the biodynamic responses obtained experimentally in terms of to-the-body and through-the-body functions, are critically reviewed and discussed to highlight influences of various contributory factors, such as those related to posture, body support, anthropometry and nature of vibration, together with the range of experimental conditions. The reported data invariably show highly complex, nonlinear and coupled effects of the majority of the contributory factors. It is shown that the reported studies often conclude conflicting effects of many factors, such as posture, gender, vibration and support conditions.