Ababil Azies Sasilo, Rizal Adi Saputra, Ika Purwanti Ningrum
{"title":"系统Pengenalan Suara Dengan metomel频率倒谱系数Dan高斯混合模型","authors":"Ababil Azies Sasilo, Rizal Adi Saputra, Ika Purwanti Ningrum","doi":"10.34010/komputika.v11i2.6655","DOIUrl":null,"url":null,"abstract":"ABSTRAK – Teknologi biometrik sedang menjadi tren teknologi dalam berbagai bidang kehidupan. Teknologi biometrik memanfaatkan bagian tubuh manusia sebagai alat ukur sistem yang memiliki keunikan disetiap individu. Suara merupakan bagian tubuh manusia yang memiliki keunikan dan cocok dijadikan sebagai alat ukur dalam sistem yang mengadopsi teknologi biometrik. Sistem pengenalan suara adalah salah satu penerapan teknologi biometrik yang fokus kepada suara manusia. Sistem pengenalan suara memerlukan metode ekstraksi fitur dan metode klasifikasi, salah satu metode ekstraksi fitur adalah MFCC. MFCC dimulai dari tahap pre-emphasis, frame blocking, windowing, fast fourier transform, mel frequency wrapping dan cepstrum. Sedangkan metode klasifikasi menggunakan GMM dengan menghitung likehood kesamaan antar suara. Berdasarkan hasil pengujian, metode MFCC-GMM pada kondisi ideal memiliki tingkat akurasi sebesar 82.22% sedangkan pada kondisi tidak ideal mendapatkan akurasi sebesar 66.67%. \nKata Kunci – Suara, Pengenalan, MFCC, GMM, Sistem","PeriodicalId":52813,"journal":{"name":"Komputika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sistem Pengenalan Suara Dengan Metode Mel Frequency Cepstral Coefficients Dan Gaussian Mixture Model\",\"authors\":\"Ababil Azies Sasilo, Rizal Adi Saputra, Ika Purwanti Ningrum\",\"doi\":\"10.34010/komputika.v11i2.6655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRAK – Teknologi biometrik sedang menjadi tren teknologi dalam berbagai bidang kehidupan. Teknologi biometrik memanfaatkan bagian tubuh manusia sebagai alat ukur sistem yang memiliki keunikan disetiap individu. Suara merupakan bagian tubuh manusia yang memiliki keunikan dan cocok dijadikan sebagai alat ukur dalam sistem yang mengadopsi teknologi biometrik. Sistem pengenalan suara adalah salah satu penerapan teknologi biometrik yang fokus kepada suara manusia. Sistem pengenalan suara memerlukan metode ekstraksi fitur dan metode klasifikasi, salah satu metode ekstraksi fitur adalah MFCC. MFCC dimulai dari tahap pre-emphasis, frame blocking, windowing, fast fourier transform, mel frequency wrapping dan cepstrum. Sedangkan metode klasifikasi menggunakan GMM dengan menghitung likehood kesamaan antar suara. Berdasarkan hasil pengujian, metode MFCC-GMM pada kondisi ideal memiliki tingkat akurasi sebesar 82.22% sedangkan pada kondisi tidak ideal mendapatkan akurasi sebesar 66.67%. \\nKata Kunci – Suara, Pengenalan, MFCC, GMM, Sistem\",\"PeriodicalId\":52813,\"journal\":{\"name\":\"Komputika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Komputika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34010/komputika.v11i2.6655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Komputika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34010/komputika.v11i2.6655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sistem Pengenalan Suara Dengan Metode Mel Frequency Cepstral Coefficients Dan Gaussian Mixture Model
ABSTRAK – Teknologi biometrik sedang menjadi tren teknologi dalam berbagai bidang kehidupan. Teknologi biometrik memanfaatkan bagian tubuh manusia sebagai alat ukur sistem yang memiliki keunikan disetiap individu. Suara merupakan bagian tubuh manusia yang memiliki keunikan dan cocok dijadikan sebagai alat ukur dalam sistem yang mengadopsi teknologi biometrik. Sistem pengenalan suara adalah salah satu penerapan teknologi biometrik yang fokus kepada suara manusia. Sistem pengenalan suara memerlukan metode ekstraksi fitur dan metode klasifikasi, salah satu metode ekstraksi fitur adalah MFCC. MFCC dimulai dari tahap pre-emphasis, frame blocking, windowing, fast fourier transform, mel frequency wrapping dan cepstrum. Sedangkan metode klasifikasi menggunakan GMM dengan menghitung likehood kesamaan antar suara. Berdasarkan hasil pengujian, metode MFCC-GMM pada kondisi ideal memiliki tingkat akurasi sebesar 82.22% sedangkan pada kondisi tidak ideal mendapatkan akurasi sebesar 66.67%.
Kata Kunci – Suara, Pengenalan, MFCC, GMM, Sistem