A. Tanwani, Andy Yan, Jonathan Lee, S. Calinon, Ken Goldberg
{"title":"从观察中学习顺序机器人模仿","authors":"A. Tanwani, Andy Yan, Jonathan Lee, S. Calinon, Ken Goldberg","doi":"10.1177/02783649211032721","DOIUrl":null,"url":null,"abstract":"This paper presents a framework to learn the sequential structure in the demonstrations for robot imitation learning. We first present a family of task-parameterized hidden semi-Markov models that extracts invariant segments (also called sub-goals or options) from demonstrated trajectories, and optimally follows the sampled sequence of states from the model with a linear quadratic tracking controller. We then extend the concept to learning invariant segments from visual observations that are sequenced together for robot imitation. We present Motion2Vec that learns a deep embedding space by minimizing a metric learning loss in a Siamese network: images from the same action segment are pulled together while being pushed away from randomly sampled images of other segments, and a time contrastive loss is used to preserve the temporal ordering of the images. The trained embeddings are segmented with a recurrent neural network, and subsequently used for decoding the end-effector pose of the robot. We first show its application to a pick-and-place task with the Baxter robot while avoiding a moving obstacle from four kinesthetic demonstrations only, followed by suturing task imitation from publicly available suturing videos of the JIGSAWS dataset with state-of-the-art 85 . 5 % segmentation accuracy and 0 . 94 cm error in position per observation on the test set.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"40 1","pages":"1306 - 1325"},"PeriodicalIF":7.5000,"publicationDate":"2021-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/02783649211032721","citationCount":"3","resultStr":"{\"title\":\"Sequential robot imitation learning from observations\",\"authors\":\"A. Tanwani, Andy Yan, Jonathan Lee, S. Calinon, Ken Goldberg\",\"doi\":\"10.1177/02783649211032721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a framework to learn the sequential structure in the demonstrations for robot imitation learning. We first present a family of task-parameterized hidden semi-Markov models that extracts invariant segments (also called sub-goals or options) from demonstrated trajectories, and optimally follows the sampled sequence of states from the model with a linear quadratic tracking controller. We then extend the concept to learning invariant segments from visual observations that are sequenced together for robot imitation. We present Motion2Vec that learns a deep embedding space by minimizing a metric learning loss in a Siamese network: images from the same action segment are pulled together while being pushed away from randomly sampled images of other segments, and a time contrastive loss is used to preserve the temporal ordering of the images. The trained embeddings are segmented with a recurrent neural network, and subsequently used for decoding the end-effector pose of the robot. We first show its application to a pick-and-place task with the Baxter robot while avoiding a moving obstacle from four kinesthetic demonstrations only, followed by suturing task imitation from publicly available suturing videos of the JIGSAWS dataset with state-of-the-art 85 . 5 % segmentation accuracy and 0 . 94 cm error in position per observation on the test set.\",\"PeriodicalId\":54942,\"journal\":{\"name\":\"International Journal of Robotics Research\",\"volume\":\"40 1\",\"pages\":\"1306 - 1325\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2021-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/02783649211032721\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Robotics Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/02783649211032721\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robotics Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/02783649211032721","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
Sequential robot imitation learning from observations
This paper presents a framework to learn the sequential structure in the demonstrations for robot imitation learning. We first present a family of task-parameterized hidden semi-Markov models that extracts invariant segments (also called sub-goals or options) from demonstrated trajectories, and optimally follows the sampled sequence of states from the model with a linear quadratic tracking controller. We then extend the concept to learning invariant segments from visual observations that are sequenced together for robot imitation. We present Motion2Vec that learns a deep embedding space by minimizing a metric learning loss in a Siamese network: images from the same action segment are pulled together while being pushed away from randomly sampled images of other segments, and a time contrastive loss is used to preserve the temporal ordering of the images. The trained embeddings are segmented with a recurrent neural network, and subsequently used for decoding the end-effector pose of the robot. We first show its application to a pick-and-place task with the Baxter robot while avoiding a moving obstacle from four kinesthetic demonstrations only, followed by suturing task imitation from publicly available suturing videos of the JIGSAWS dataset with state-of-the-art 85 . 5 % segmentation accuracy and 0 . 94 cm error in position per observation on the test set.
期刊介绍:
The International Journal of Robotics Research (IJRR) has been a leading peer-reviewed publication in the field for over two decades. It holds the distinction of being the first scholarly journal dedicated to robotics research.
IJRR presents cutting-edge and thought-provoking original research papers, articles, and reviews that delve into groundbreaking trends, technical advancements, and theoretical developments in robotics. Renowned scholars and practitioners contribute to its content, offering their expertise and insights. This journal covers a wide range of topics, going beyond narrow technical advancements to encompass various aspects of robotics.
The primary aim of IJRR is to publish work that has lasting value for the scientific and technological advancement of the field. Only original, robust, and practical research that can serve as a foundation for further progress is considered for publication. The focus is on producing content that will remain valuable and relevant over time.
In summary, IJRR stands as a prestigious publication that drives innovation and knowledge in robotics research.