基于Spiking神经网络的航空铆钉腐蚀超声检测

IF 2.6 3区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Journal of Nondestructive Evaluation Pub Date : 2023-08-29 DOI:10.1007/s10921-023-00990-6
Minhhuy Le, Jinyi Lee
{"title":"基于Spiking神经网络的航空铆钉腐蚀超声检测","authors":"Minhhuy Le,&nbsp;Jinyi Lee","doi":"10.1007/s10921-023-00990-6","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a nondestructive testing (NDT) method for the inspection of corrosion in rivets used in an aircraft. The NDT system uses an ultrasonic sensor coupling with a membrane that allows the ultrasonic wave propagates through to the inspecting rivet. The measured signal is then analyzed by a spiking neural network (SNN), a neural network that mimics the biological neurons for efficient detection of the corrosion in rivet. Compared to the conventional deep neural network, SNN is low energy consumption and can be implemented on a compact SNN accelerator chip, making them better run on a compact NDT system and general edge computing applications. We have tested the proposed SNN model on different sizes of corrosion in rivets (i.e., 30–70% of cross-section area) and at different depths from the surface (i.e., 1.0–2.0 mm). The proposed SNN model achieves about 95.4% accuracy with a small number of rivet samples (i.e., four rivet with corrosion) for training.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"42 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrasonic Testing of Corrosion in Aircraft Rivet Using Spiking Neural Network\",\"authors\":\"Minhhuy Le,&nbsp;Jinyi Lee\",\"doi\":\"10.1007/s10921-023-00990-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposes a nondestructive testing (NDT) method for the inspection of corrosion in rivets used in an aircraft. The NDT system uses an ultrasonic sensor coupling with a membrane that allows the ultrasonic wave propagates through to the inspecting rivet. The measured signal is then analyzed by a spiking neural network (SNN), a neural network that mimics the biological neurons for efficient detection of the corrosion in rivet. Compared to the conventional deep neural network, SNN is low energy consumption and can be implemented on a compact SNN accelerator chip, making them better run on a compact NDT system and general edge computing applications. We have tested the proposed SNN model on different sizes of corrosion in rivets (i.e., 30–70% of cross-section area) and at different depths from the surface (i.e., 1.0–2.0 mm). The proposed SNN model achieves about 95.4% accuracy with a small number of rivet samples (i.e., four rivet with corrosion) for training.</p></div>\",\"PeriodicalId\":655,\"journal\":{\"name\":\"Journal of Nondestructive Evaluation\",\"volume\":\"42 3\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nondestructive Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10921-023-00990-6\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-023-00990-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种用于飞机铆钉腐蚀检测的无损检测方法。NDT系统使用一个超声波传感器与一层膜耦合,允许超声波通过检测铆钉传播。测量到的信号然后通过一个峰值神经网络(SNN)进行分析,SNN是一种模仿生物神经元的神经网络,用于有效检测铆钉中的腐蚀。与传统的深度神经网络相比,SNN能耗低,可以在紧凑的SNN加速器芯片上实现,使其更好地运行在紧凑的无损检测系统和一般边缘计算应用中。我们已经在铆钉的不同腐蚀尺寸(即30-70%的横截面面积)和距离表面的不同深度(即1.0-2.0 mm)上测试了所提出的SNN模型。采用少量铆钉样本(即4个锈蚀铆钉)进行训练,SNN模型的准确率达到95.4%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ultrasonic Testing of Corrosion in Aircraft Rivet Using Spiking Neural Network

This paper proposes a nondestructive testing (NDT) method for the inspection of corrosion in rivets used in an aircraft. The NDT system uses an ultrasonic sensor coupling with a membrane that allows the ultrasonic wave propagates through to the inspecting rivet. The measured signal is then analyzed by a spiking neural network (SNN), a neural network that mimics the biological neurons for efficient detection of the corrosion in rivet. Compared to the conventional deep neural network, SNN is low energy consumption and can be implemented on a compact SNN accelerator chip, making them better run on a compact NDT system and general edge computing applications. We have tested the proposed SNN model on different sizes of corrosion in rivets (i.e., 30–70% of cross-section area) and at different depths from the surface (i.e., 1.0–2.0 mm). The proposed SNN model achieves about 95.4% accuracy with a small number of rivet samples (i.e., four rivet with corrosion) for training.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nondestructive Evaluation
Journal of Nondestructive Evaluation 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
7.10%
发文量
67
审稿时长
9 months
期刊介绍: Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.
期刊最新文献
Electromagnetic Radiation Characteristics and Mechanical Properties of Cement-Mortar Under Impact Load Instance Segmentation XXL-CT Challenge of a Historic Airplane Publisher Correction: Intelligent Extraction of Surface Cracks on LNG Outer Tanks Based on Close-Range Image Point Clouds and Infrared Imagery Acoustic Emission Signal Feature Extraction for Bearing Faults Using ACF and GMOMEDA Modeling and Analysis of Ellipticity Dispersion Characteristics of Lamb Waves in Pre-stressed Plates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1