{"title":"基于深度神经网络和加权隐式反馈的个性化推荐算法","authors":"薛峰, 刘凯, 王东, 张浩博","doi":"10.16451/J.CNKI.ISSN1003-6059.202004002","DOIUrl":null,"url":null,"abstract":"In singular value decomposition++(SVD++),inner product of user and item feature vector is regarded as user′s rating of items.However,inner product cannot capture the high-order nonlinear relationship between the user and the item.In addition,the contribution of different interactive items cannot be distinguished when user′s implicit feedback is incorporated in SVD++.A recommendation algorithm based on deep neural network and weighted implicit feedback is proposed to solve the two problems.Deep neural network is adopted to model the relationship between the user and the object and attention mechanism is utilized to calculate the weight of historical interactive items in modeling user′s implicit feedback.Experiments on public datasets verify the effectiveness of the proposed algorithm.","PeriodicalId":34917,"journal":{"name":"模式识别与人工智能","volume":"33 1","pages":"295-302"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Personalized Recommendation Algorithm Based on Deep Neural Network and Weighted Implicit Feedback\",\"authors\":\"薛峰, 刘凯, 王东, 张浩博\",\"doi\":\"10.16451/J.CNKI.ISSN1003-6059.202004002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In singular value decomposition++(SVD++),inner product of user and item feature vector is regarded as user′s rating of items.However,inner product cannot capture the high-order nonlinear relationship between the user and the item.In addition,the contribution of different interactive items cannot be distinguished when user′s implicit feedback is incorporated in SVD++.A recommendation algorithm based on deep neural network and weighted implicit feedback is proposed to solve the two problems.Deep neural network is adopted to model the relationship between the user and the object and attention mechanism is utilized to calculate the weight of historical interactive items in modeling user′s implicit feedback.Experiments on public datasets verify the effectiveness of the proposed algorithm.\",\"PeriodicalId\":34917,\"journal\":{\"name\":\"模式识别与人工智能\",\"volume\":\"33 1\",\"pages\":\"295-302\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"模式识别与人工智能\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.16451/J.CNKI.ISSN1003-6059.202004002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"模式识别与人工智能","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.16451/J.CNKI.ISSN1003-6059.202004002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
Personalized Recommendation Algorithm Based on Deep Neural Network and Weighted Implicit Feedback
In singular value decomposition++(SVD++),inner product of user and item feature vector is regarded as user′s rating of items.However,inner product cannot capture the high-order nonlinear relationship between the user and the item.In addition,the contribution of different interactive items cannot be distinguished when user′s implicit feedback is incorporated in SVD++.A recommendation algorithm based on deep neural network and weighted implicit feedback is proposed to solve the two problems.Deep neural network is adopted to model the relationship between the user and the object and attention mechanism is utilized to calculate the weight of historical interactive items in modeling user′s implicit feedback.Experiments on public datasets verify the effectiveness of the proposed algorithm.