S. Sinhamahapatra, P. Das, K. Dana, Himanshu Tripathi
{"title":"铝酸镁尖晶石的结构、性能、合成及应用","authors":"S. Sinhamahapatra, P. Das, K. Dana, Himanshu Tripathi","doi":"10.1080/0371750X.2022.2137701","DOIUrl":null,"url":null,"abstract":"Magnesium aluminate (MA) is a spinel group of material and rarely available in nature. It exhibits several advantageous thermal, thermo-mechanical, optical, chemical properties which renders it suitable for wide gamut applications starting from refractory to sensor to IR transmitting window. It has face centered cubic structure and has wide solubility to its end members at elevated temperatures. As a result of this solubility, non-stoichiometric compositions exist in the phase field of spinel in the phase diagram. Due to its unavailability in nature, MA spinels are synthetically prepared through different routes and using different starting materials. Among these, solid state reaction sintering or conventional mixed oxide (CMO) method is the most techno-economical viable process. However, the challenge lies with the preparation of dense MA spinel from its oxide precursors in a single stage process is the expansion due to spinellization. Several attempts have been made to overcome this deterring factor through improving the reactivity of the precursors, by controlling the processing parameters, or by using the mineralizers. In this paper crystal structure, stoichiometry in spinel composition, mechanism of spinel formation, different synthesis method, properties and applications are reviewed. GRAPHICAL ABSTRACT","PeriodicalId":23233,"journal":{"name":"Transactions of the Indian Ceramic Society","volume":"81 1","pages":"97 - 120"},"PeriodicalIF":1.5000,"publicationDate":"2022-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Magnesium Aluminate Spinel: Structure, Properties, Synthesis and Applications\",\"authors\":\"S. Sinhamahapatra, P. Das, K. Dana, Himanshu Tripathi\",\"doi\":\"10.1080/0371750X.2022.2137701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnesium aluminate (MA) is a spinel group of material and rarely available in nature. It exhibits several advantageous thermal, thermo-mechanical, optical, chemical properties which renders it suitable for wide gamut applications starting from refractory to sensor to IR transmitting window. It has face centered cubic structure and has wide solubility to its end members at elevated temperatures. As a result of this solubility, non-stoichiometric compositions exist in the phase field of spinel in the phase diagram. Due to its unavailability in nature, MA spinels are synthetically prepared through different routes and using different starting materials. Among these, solid state reaction sintering or conventional mixed oxide (CMO) method is the most techno-economical viable process. However, the challenge lies with the preparation of dense MA spinel from its oxide precursors in a single stage process is the expansion due to spinellization. Several attempts have been made to overcome this deterring factor through improving the reactivity of the precursors, by controlling the processing parameters, or by using the mineralizers. In this paper crystal structure, stoichiometry in spinel composition, mechanism of spinel formation, different synthesis method, properties and applications are reviewed. GRAPHICAL ABSTRACT\",\"PeriodicalId\":23233,\"journal\":{\"name\":\"Transactions of the Indian Ceramic Society\",\"volume\":\"81 1\",\"pages\":\"97 - 120\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Indian Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/0371750X.2022.2137701\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Indian Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/0371750X.2022.2137701","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Magnesium Aluminate Spinel: Structure, Properties, Synthesis and Applications
Magnesium aluminate (MA) is a spinel group of material and rarely available in nature. It exhibits several advantageous thermal, thermo-mechanical, optical, chemical properties which renders it suitable for wide gamut applications starting from refractory to sensor to IR transmitting window. It has face centered cubic structure and has wide solubility to its end members at elevated temperatures. As a result of this solubility, non-stoichiometric compositions exist in the phase field of spinel in the phase diagram. Due to its unavailability in nature, MA spinels are synthetically prepared through different routes and using different starting materials. Among these, solid state reaction sintering or conventional mixed oxide (CMO) method is the most techno-economical viable process. However, the challenge lies with the preparation of dense MA spinel from its oxide precursors in a single stage process is the expansion due to spinellization. Several attempts have been made to overcome this deterring factor through improving the reactivity of the precursors, by controlling the processing parameters, or by using the mineralizers. In this paper crystal structure, stoichiometry in spinel composition, mechanism of spinel formation, different synthesis method, properties and applications are reviewed. GRAPHICAL ABSTRACT
期刊介绍:
Transactions of the Indian Ceramic Society is a quarterly Journal devoted to current scientific research, technology and industry-related news on glass and ceramics. The Journal covers subjects such as the chemical, mechanical, optical, electronic and spectroscopic properties of glass and ceramics, and characterization of materials belonging to this family.
The Editor invites original research papers, topical reviews, opinions and achievements, as well as industry profiles for publication. The contributions should be accompanied by abstracts, keywords and other details, as outlined in the Instructions for Authors section. News, views and other comments on activities of specific industries and organizations, and also analyses of industrial scenarios are also welcome.