I. Seminsky, А.K. Seminsky, А. Pospeev, F.R. Rustamova
{"title":"综合地球物理方法研究贝加尔湖裂谷中最大的安加拉断层深层结构","authors":"I. Seminsky, А.K. Seminsky, А. Pospeev, F.R. Rustamova","doi":"10.2113/rgg20234539","DOIUrl":null,"url":null,"abstract":"\n —The Angara regional fault which is transversal to the Baikal basin totals about 150 km in length and ranks as a major strike-slip fault with the normal component in the seismically active rift zone. Given that its vicinities represent an area with high population density, the emphasis needs to be placed primarily on the study of its structural features. At this, the Angara fault has been poorly studied by geophysical methods. Results of the specialized mapping carried out in the 1990s revealed the block structure of the Angara fault zone, however without a reliable identification of the fault plane, which leaves its position still to be debatable. To establish the Angara fault plane and studying its deep structure, the integration of such geophysical methods as magnetotelluric (MT) sounding, radon emanation and fieldwalking magnetic surveys was required. Their application in the study of the deep structure of the southern parts of the Angara fault allowed revealing anomalies in all of the measured fields, accordingly. The anomaly-forming object, which the authors associate with the deep penetrated Angara fault plane, was expressed in the most distinct way by the magnetotelluric data (as a high-resistivity region (ER = 8500 Ohm∙m) relative to the host rock) and radon emanation survey (radon volumetric activity index RAI ≥ 20). The fact that the magnetic field received only minor distortions from the object may indicate either moderate magnetic characteristics of the latter or a significant occurrence depth. The identified anomaly-forming object localized within the crystalline basement tends to be more sharply expressed in the left bank of the Irkutsk Reservoir, while in the upper part of the cross-section it is overprinted by rocks of the sedimentary cover.","PeriodicalId":49587,"journal":{"name":"Russian Geology and Geophysics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of Geophysical Methods to Study Deep Structure of the Angara Fault, the Largest in the Baikal Rift\",\"authors\":\"I. Seminsky, А.K. Seminsky, А. Pospeev, F.R. Rustamova\",\"doi\":\"10.2113/rgg20234539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n —The Angara regional fault which is transversal to the Baikal basin totals about 150 km in length and ranks as a major strike-slip fault with the normal component in the seismically active rift zone. Given that its vicinities represent an area with high population density, the emphasis needs to be placed primarily on the study of its structural features. At this, the Angara fault has been poorly studied by geophysical methods. Results of the specialized mapping carried out in the 1990s revealed the block structure of the Angara fault zone, however without a reliable identification of the fault plane, which leaves its position still to be debatable. To establish the Angara fault plane and studying its deep structure, the integration of such geophysical methods as magnetotelluric (MT) sounding, radon emanation and fieldwalking magnetic surveys was required. Their application in the study of the deep structure of the southern parts of the Angara fault allowed revealing anomalies in all of the measured fields, accordingly. The anomaly-forming object, which the authors associate with the deep penetrated Angara fault plane, was expressed in the most distinct way by the magnetotelluric data (as a high-resistivity region (ER = 8500 Ohm∙m) relative to the host rock) and radon emanation survey (radon volumetric activity index RAI ≥ 20). The fact that the magnetic field received only minor distortions from the object may indicate either moderate magnetic characteristics of the latter or a significant occurrence depth. The identified anomaly-forming object localized within the crystalline basement tends to be more sharply expressed in the left bank of the Irkutsk Reservoir, while in the upper part of the cross-section it is overprinted by rocks of the sedimentary cover.\",\"PeriodicalId\":49587,\"journal\":{\"name\":\"Russian Geology and Geophysics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Geology and Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2113/rgg20234539\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Geology and Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2113/rgg20234539","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Integration of Geophysical Methods to Study Deep Structure of the Angara Fault, the Largest in the Baikal Rift
—The Angara regional fault which is transversal to the Baikal basin totals about 150 km in length and ranks as a major strike-slip fault with the normal component in the seismically active rift zone. Given that its vicinities represent an area with high population density, the emphasis needs to be placed primarily on the study of its structural features. At this, the Angara fault has been poorly studied by geophysical methods. Results of the specialized mapping carried out in the 1990s revealed the block structure of the Angara fault zone, however without a reliable identification of the fault plane, which leaves its position still to be debatable. To establish the Angara fault plane and studying its deep structure, the integration of such geophysical methods as magnetotelluric (MT) sounding, radon emanation and fieldwalking magnetic surveys was required. Their application in the study of the deep structure of the southern parts of the Angara fault allowed revealing anomalies in all of the measured fields, accordingly. The anomaly-forming object, which the authors associate with the deep penetrated Angara fault plane, was expressed in the most distinct way by the magnetotelluric data (as a high-resistivity region (ER = 8500 Ohm∙m) relative to the host rock) and radon emanation survey (radon volumetric activity index RAI ≥ 20). The fact that the magnetic field received only minor distortions from the object may indicate either moderate magnetic characteristics of the latter or a significant occurrence depth. The identified anomaly-forming object localized within the crystalline basement tends to be more sharply expressed in the left bank of the Irkutsk Reservoir, while in the upper part of the cross-section it is overprinted by rocks of the sedimentary cover.
期刊介绍:
The journal publishes original reports of theoretical and methodological nature in the fields of geology, geophysics, and geochemistry, which contain data on composition and structure of the Earth''s crust and mantle, describes processes of formation and general regularities of commercial mineral occurrences, investigations on development and application of geological-geophysical methods for their revealing. As to works of regional nature, accelerated publication are available for original papers on a variety of problems of comparative geology taking into account specific character of Siberia, adjacent Asian countries and water areas. The journal will also publish reviews, critical articles, chronicle of the most important scientific events, and advertisements.