{"title":"包含零点局部时间的一维随机微分方程的截断Euler-Maruyama方法","authors":"Kamal Hiderah","doi":"10.1515/rose-2023-2003","DOIUrl":null,"url":null,"abstract":"Abstract Recently, Mao developed a new explicit method, called the truncated Euler–Maruyama method for nonlinear SDEs, and established the strong convergence theory under the local Lipschitz condition plus the Khasminskii-type condition. The key aim of this paper is to establish the rate of strong convergence of the truncated Euler–Maruyama method for one-dimensional stochastic differential equations involving that the local time at point zero under the drift coefficient satisfies a one-sided Lipschitz condition and plus some additional conditions.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":"31 1","pages":"141 - 152"},"PeriodicalIF":0.3000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The truncated Euler–Maruyama method of one-dimensional stochastic differential equations involving the local time at point zero\",\"authors\":\"Kamal Hiderah\",\"doi\":\"10.1515/rose-2023-2003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Recently, Mao developed a new explicit method, called the truncated Euler–Maruyama method for nonlinear SDEs, and established the strong convergence theory under the local Lipschitz condition plus the Khasminskii-type condition. The key aim of this paper is to establish the rate of strong convergence of the truncated Euler–Maruyama method for one-dimensional stochastic differential equations involving that the local time at point zero under the drift coefficient satisfies a one-sided Lipschitz condition and plus some additional conditions.\",\"PeriodicalId\":43421,\"journal\":{\"name\":\"Random Operators and Stochastic Equations\",\"volume\":\"31 1\",\"pages\":\"141 - 152\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Operators and Stochastic Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/rose-2023-2003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2023-2003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
The truncated Euler–Maruyama method of one-dimensional stochastic differential equations involving the local time at point zero
Abstract Recently, Mao developed a new explicit method, called the truncated Euler–Maruyama method for nonlinear SDEs, and established the strong convergence theory under the local Lipschitz condition plus the Khasminskii-type condition. The key aim of this paper is to establish the rate of strong convergence of the truncated Euler–Maruyama method for one-dimensional stochastic differential equations involving that the local time at point zero under the drift coefficient satisfies a one-sided Lipschitz condition and plus some additional conditions.