Paulo Guimarães, Osvaldo Candido, André Ricardo de Pinho Ronzani
{"title":"估计多因素公司债券定价模型的正则化方法:在巴西的应用","authors":"Paulo Guimarães, Osvaldo Candido, André Ricardo de Pinho Ronzani","doi":"10.1142/S2010495221500056","DOIUrl":null,"url":null,"abstract":"The present work focused on studying which factors affect Brazilian inflation-linked corporate bond prices in a primary market setting. The explanatory variables tested were rating, maturity, duration, issuer governance level, industrial classification, collateral, tax exemption, public offering modality, financial volume, coupon frequency, number of issues, number of days since going public, and the Brazilian basic interest rate target. In order to choose the set of variables with best predictive performance, best subsets ordinary least square (OLS) and least absolute shrinkage and selection operator (LASSO) were applied on a testing sample. For estimating purposes, we also tested the Ridge estimator. For both LASSO and Ridge, we used the k-fold approach to choose the optimal value for the lambda penalty. In terms of smallest mean squared error, the OLS estimator outperformed both the Ridge and the LASSO. This result suggests that the variance-bias trade-off might not be a concern for the Brazilian case.","PeriodicalId":43570,"journal":{"name":"Annals of Financial Economics","volume":"16 1","pages":"2150005"},"PeriodicalIF":2.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"REGULARIZATION METHODS FOR ESTIMATING A MULTI-FACTOR CORPORATE BOND PRICING MODEL: AN APPLICATION FOR BRAZIL\",\"authors\":\"Paulo Guimarães, Osvaldo Candido, André Ricardo de Pinho Ronzani\",\"doi\":\"10.1142/S2010495221500056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work focused on studying which factors affect Brazilian inflation-linked corporate bond prices in a primary market setting. The explanatory variables tested were rating, maturity, duration, issuer governance level, industrial classification, collateral, tax exemption, public offering modality, financial volume, coupon frequency, number of issues, number of days since going public, and the Brazilian basic interest rate target. In order to choose the set of variables with best predictive performance, best subsets ordinary least square (OLS) and least absolute shrinkage and selection operator (LASSO) were applied on a testing sample. For estimating purposes, we also tested the Ridge estimator. For both LASSO and Ridge, we used the k-fold approach to choose the optimal value for the lambda penalty. In terms of smallest mean squared error, the OLS estimator outperformed both the Ridge and the LASSO. This result suggests that the variance-bias trade-off might not be a concern for the Brazilian case.\",\"PeriodicalId\":43570,\"journal\":{\"name\":\"Annals of Financial Economics\",\"volume\":\"16 1\",\"pages\":\"2150005\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Financial Economics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S2010495221500056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Financial Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2010495221500056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ECONOMICS","Score":null,"Total":0}
REGULARIZATION METHODS FOR ESTIMATING A MULTI-FACTOR CORPORATE BOND PRICING MODEL: AN APPLICATION FOR BRAZIL
The present work focused on studying which factors affect Brazilian inflation-linked corporate bond prices in a primary market setting. The explanatory variables tested were rating, maturity, duration, issuer governance level, industrial classification, collateral, tax exemption, public offering modality, financial volume, coupon frequency, number of issues, number of days since going public, and the Brazilian basic interest rate target. In order to choose the set of variables with best predictive performance, best subsets ordinary least square (OLS) and least absolute shrinkage and selection operator (LASSO) were applied on a testing sample. For estimating purposes, we also tested the Ridge estimator. For both LASSO and Ridge, we used the k-fold approach to choose the optimal value for the lambda penalty. In terms of smallest mean squared error, the OLS estimator outperformed both the Ridge and the LASSO. This result suggests that the variance-bias trade-off might not be a concern for the Brazilian case.