基于数字图像处理的加工中砂轮磨损评估

B. Azarhoushang, S. Ludwig
{"title":"基于数字图像处理的加工中砂轮磨损评估","authors":"B. Azarhoushang, S. Ludwig","doi":"10.1504/IJAT.2019.10022870","DOIUrl":null,"url":null,"abstract":"The microtopography of the grinding tool surface is essential for the result of the grinding process. Micro wear and tool loading lead to an increase in process forces and temperatures. Subsequently, poor surface qualities, dimensional and profile errors and thermal damage to the workpiece could be induced by the grinding process. A novel process-oriented measuring method is developed to quickly and efficiently evaluate the surface topography of grinding tools. Images of the tool surface are evaluated by an innovative image processing software for characterising grit flattening and tool loading. The developed technique and the results of the application during the grinding process is described. The results show a direct proportionality between the output values of the proposed method and the measured grinding forces. Hence, the developed measurement method can be used for the evaluation of grinding process and for an assessment of the tool life.","PeriodicalId":39039,"journal":{"name":"International Journal of Abrasive Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"In-process grinding wheel wear evaluation using digital image processing\",\"authors\":\"B. Azarhoushang, S. Ludwig\",\"doi\":\"10.1504/IJAT.2019.10022870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The microtopography of the grinding tool surface is essential for the result of the grinding process. Micro wear and tool loading lead to an increase in process forces and temperatures. Subsequently, poor surface qualities, dimensional and profile errors and thermal damage to the workpiece could be induced by the grinding process. A novel process-oriented measuring method is developed to quickly and efficiently evaluate the surface topography of grinding tools. Images of the tool surface are evaluated by an innovative image processing software for characterising grit flattening and tool loading. The developed technique and the results of the application during the grinding process is described. The results show a direct proportionality between the output values of the proposed method and the measured grinding forces. Hence, the developed measurement method can be used for the evaluation of grinding process and for an assessment of the tool life.\",\"PeriodicalId\":39039,\"journal\":{\"name\":\"International Journal of Abrasive Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Abrasive Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJAT.2019.10022870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Abrasive Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJAT.2019.10022870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 5

摘要

磨削工具表面的微观形貌对磨削过程的结果至关重要。微磨损和工具负载导致过程力和温度的增加。随后,磨削过程可能会导致工件表面质量差、尺寸和轮廓误差以及热损伤。开发了一种新的面向过程的测量方法来快速有效地评估磨削工具的表面形貌。工具表面的图像通过创新的图像处理软件进行评估,用于表征砂砾平整和工具加载。介绍了所开发的技术及其在磨削过程中的应用效果。结果表明,所提出的方法的输出值与测量的磨削力之间存在直接的比例关系。因此,所开发的测量方法可用于评估磨削过程和评估刀具寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In-process grinding wheel wear evaluation using digital image processing
The microtopography of the grinding tool surface is essential for the result of the grinding process. Micro wear and tool loading lead to an increase in process forces and temperatures. Subsequently, poor surface qualities, dimensional and profile errors and thermal damage to the workpiece could be induced by the grinding process. A novel process-oriented measuring method is developed to quickly and efficiently evaluate the surface topography of grinding tools. Images of the tool surface are evaluated by an innovative image processing software for characterising grit flattening and tool loading. The developed technique and the results of the application during the grinding process is described. The results show a direct proportionality between the output values of the proposed method and the measured grinding forces. Hence, the developed measurement method can be used for the evaluation of grinding process and for an assessment of the tool life.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Abrasive Technology
International Journal of Abrasive Technology Engineering-Industrial and Manufacturing Engineering
CiteScore
0.90
自引率
0.00%
发文量
13
期刊最新文献
A modeling study of grinding force for axial feed machining of Si3N4-diamond grinding wheel endface based on specific chip energy Experimental study on plunge-cut internal cylindrical electrolysis grinding processing of bearing ring Experimental study on the processing of sapphire with a free-abrasive assisted fixed-abrasive lapping plate Investigation on Workpiece Microstructure and Wheel Performance on Grinding Titanium Metal Matrix Composites Modelling of Material Removal in Unidirectional Abrasive Flow Machining process using Classical Indentation Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1