基于模糊聚类分析算法的时间序列ANFIS预测模型的改进

Dinh Toan Pham, Dan Nguyenthihong, T. Vovan
{"title":"基于模糊聚类分析算法的时间序列ANFIS预测模型的改进","authors":"Dinh Toan Pham, Dan Nguyenthihong, T. Vovan","doi":"10.4018/ijfsa.313602","DOIUrl":null,"url":null,"abstract":"This paper proposes the forecasting model for the time series based on the improvement of the adaptive neuro-fuzzy inference system (ANFIS) method and the fuzzy cluster analysis (FCA) algorithm. In this model, (i) the authors firstly find the appropriate number of groups for the series. Then, (ii) this study determines the specific elements for each group based on the established fuzzy relationship. Finally, using the results of (i) and (ii) as the input variables, the authors improve the iterations of ANFIS method. Combining the above improvements, the efficient forecasting model for time series is proposed. The proposed model is illustrated step by step through a numerical example, and implemented rapidly by the established Matlab procedure. The experiment obtained from this model shows the outstanding advantages in comparison with the existing ones. This research can be applied well to forecast for many fields in reality.","PeriodicalId":38154,"journal":{"name":"International Journal of Fuzzy System Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improving the ANFIS Forecating Model for Time Series Based on the Fuzzy Cluster Analysis Algorithm\",\"authors\":\"Dinh Toan Pham, Dan Nguyenthihong, T. Vovan\",\"doi\":\"10.4018/ijfsa.313602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes the forecasting model for the time series based on the improvement of the adaptive neuro-fuzzy inference system (ANFIS) method and the fuzzy cluster analysis (FCA) algorithm. In this model, (i) the authors firstly find the appropriate number of groups for the series. Then, (ii) this study determines the specific elements for each group based on the established fuzzy relationship. Finally, using the results of (i) and (ii) as the input variables, the authors improve the iterations of ANFIS method. Combining the above improvements, the efficient forecasting model for time series is proposed. The proposed model is illustrated step by step through a numerical example, and implemented rapidly by the established Matlab procedure. The experiment obtained from this model shows the outstanding advantages in comparison with the existing ones. This research can be applied well to forecast for many fields in reality.\",\"PeriodicalId\":38154,\"journal\":{\"name\":\"International Journal of Fuzzy System Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fuzzy System Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijfsa.313602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fuzzy System Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijfsa.313602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

摘要

本文在改进自适应神经模糊推理系统(ANFIS)方法和模糊聚类分析(FCA)算法的基础上,提出了时间序列的预测模型。在这个模型中,(i)作者首先为级数找到合适的群的数量。然后,(ii)本研究根据建立的模糊关系确定每组的具体元素。最后,以(i)和(ii)的结果作为输入变量,对ANFIS方法的迭代进行了改进。结合以上改进,提出了一种有效的时间序列预测模型。通过一个算例,逐步说明了所提出的模型,并通过建立的Matlab程序快速实现。实验表明,该模型与现有模型相比具有突出的优点。该研究可以很好地应用于现实中许多领域的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving the ANFIS Forecating Model for Time Series Based on the Fuzzy Cluster Analysis Algorithm
This paper proposes the forecasting model for the time series based on the improvement of the adaptive neuro-fuzzy inference system (ANFIS) method and the fuzzy cluster analysis (FCA) algorithm. In this model, (i) the authors firstly find the appropriate number of groups for the series. Then, (ii) this study determines the specific elements for each group based on the established fuzzy relationship. Finally, using the results of (i) and (ii) as the input variables, the authors improve the iterations of ANFIS method. Combining the above improvements, the efficient forecasting model for time series is proposed. The proposed model is illustrated step by step through a numerical example, and implemented rapidly by the established Matlab procedure. The experiment obtained from this model shows the outstanding advantages in comparison with the existing ones. This research can be applied well to forecast for many fields in reality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Fuzzy System Applications
International Journal of Fuzzy System Applications Computer Science-Computer Science (all)
CiteScore
2.40
自引率
0.00%
发文量
65
期刊最新文献
Trusted Computing and Privacy Protection of Computer Internet of Things Nodes Based on Deep Fuzzy Control of Dynamic Learning Rate An Online Hotel Selection Method With Three-Dimensional Analysis of Reviews' Helpfulness Diagnosing the Organizational Climate of Junior High Schools in Taiwan Fuzzy SVM With Mahalanobis Distance for Situational Awareness-Based Recognition of Public Health Emergencies A Game Model Analysis of the International Digital Service Tax in an Asymmetric Market Duopoly
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1