基于IEG控制机制的电化学加工单元在生物材料Ti-6Al-4V ELI上加工孔及表征

IF 2.7 4区 工程技术 Q2 ENGINEERING, MANUFACTURING Machining Science and Technology Pub Date : 2022-05-04 DOI:10.1080/10910344.2022.2129985
S. Aravind, S. Hiremath
{"title":"基于IEG控制机制的电化学加工单元在生物材料Ti-6Al-4V ELI上加工孔及表征","authors":"S. Aravind, S. Hiremath","doi":"10.1080/10910344.2022.2129985","DOIUrl":null,"url":null,"abstract":"Abstract This article presents a comprehensive study on the machining and characterization of the holes machined on a biomaterial Ti-6Al-4V ELI of 350 µm thickness with hollow stainless steel tool electrode of outside diameter 250 µm using the tailor-made µ-ECM experimental setup. The distinct feature of the experimental unit is an indigenously made pulse generator circuit and a closed-loop tool feed circuit made from a current-based sensor to retain a constant inter-electrode gap (IEG) between the tool electrode and the workpiece electrode during the machining operation. The machining process parameters are electrolyte concentration (wt % C), voltage (V) and duty factor (% DF). The output responses of interest are Circularity (C), Material Removal Rate (MRR), Taper Angle (TA), Stray Corrosion Zone (SCZ) Width and Radial Over Cut (ROC) of the hole machined. The maximum MRR obtained is 7.2 µg/s at the parametric combination of 12 V, 15 wt % C and 50% DF. The maximum circularity of 0.989 and minimum SCZ width of 309.796 µm is produced by the combination of 8 V, 15 wt % C and 30% DF. The minimum ROC of 181.091 µm is generated by the combination of 10 V, 20 wt % C and 50% DF. The combination of 12 V, 25 wt % C and 40% DF resulted a minimum TA of 0.235 degrees. The machined hole topography study based on the High Resolution Scanning Electron Microscope (HRSEM) images of all the machined holes revealed that the parametric combination of 8 V, 15 wt % C and 30% DF yielded uniform microstructure in the SCZ no pitting corrosion, smooth and precise hole edge. The presence of sodium and bromine is found in Energy Dispersive Spectroscopy (EDS) analysis of the machined hole surface. In addition to these elements, titanium and vanadium are found in the used tool electrode.","PeriodicalId":51109,"journal":{"name":"Machining Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machining and characterization of holes machined on a biomaterial Ti-6Al-4V ELI using an indigenously developed electrochemical machining cell with IEG control mechanism\",\"authors\":\"S. Aravind, S. Hiremath\",\"doi\":\"10.1080/10910344.2022.2129985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article presents a comprehensive study on the machining and characterization of the holes machined on a biomaterial Ti-6Al-4V ELI of 350 µm thickness with hollow stainless steel tool electrode of outside diameter 250 µm using the tailor-made µ-ECM experimental setup. The distinct feature of the experimental unit is an indigenously made pulse generator circuit and a closed-loop tool feed circuit made from a current-based sensor to retain a constant inter-electrode gap (IEG) between the tool electrode and the workpiece electrode during the machining operation. The machining process parameters are electrolyte concentration (wt % C), voltage (V) and duty factor (% DF). The output responses of interest are Circularity (C), Material Removal Rate (MRR), Taper Angle (TA), Stray Corrosion Zone (SCZ) Width and Radial Over Cut (ROC) of the hole machined. The maximum MRR obtained is 7.2 µg/s at the parametric combination of 12 V, 15 wt % C and 50% DF. The maximum circularity of 0.989 and minimum SCZ width of 309.796 µm is produced by the combination of 8 V, 15 wt % C and 30% DF. The minimum ROC of 181.091 µm is generated by the combination of 10 V, 20 wt % C and 50% DF. The combination of 12 V, 25 wt % C and 40% DF resulted a minimum TA of 0.235 degrees. The machined hole topography study based on the High Resolution Scanning Electron Microscope (HRSEM) images of all the machined holes revealed that the parametric combination of 8 V, 15 wt % C and 30% DF yielded uniform microstructure in the SCZ no pitting corrosion, smooth and precise hole edge. The presence of sodium and bromine is found in Energy Dispersive Spectroscopy (EDS) analysis of the machined hole surface. In addition to these elements, titanium and vanadium are found in the used tool electrode.\",\"PeriodicalId\":51109,\"journal\":{\"name\":\"Machining Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machining Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10910344.2022.2129985\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10910344.2022.2129985","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

摘要采用特制的微电解加工实验装置,对厚度为350µm的生物材料Ti-6Al-4V ELI和外径为250µm的中空不锈钢工具电极的微电解加工孔的加工和表征进行了全面研究。该实验装置的显著特点是一个国产脉冲产生电路和一个由基于电流的传感器制成的闭环刀具进给电路,以在加工过程中保持刀具电极和工件电极之间的恒定电极间隙(IEG)。加工工艺参数为电解液浓度(wt % C)、电压(V)和占空因数(% DF)。感兴趣的输出响应是加工孔的圆度(C),材料去除率(MRR),锥度角(TA),杂散腐蚀区(SCZ)宽度和径向过切(ROC)。在12 V, 15 wt % C和50% DF的参数组合下,获得的最大MRR为7.2µg/s。8 V, 15 wt % C和30% DF的组合产生的最大圆度为0.989,最小SCZ宽度为309.796µm。10 V、20 wt % C和50% DF的组合产生的最小ROC为181.091µm。12v, 25wt % C和40% DF的组合导致最小TA为0.235度。基于高分辨率扫描电镜(HRSEM)对所有孔的加工形貌进行了研究,结果表明,8 V、15 wt % C和30% DF的参数组合在SCZ内获得了均匀的组织,无点蚀,孔边缘光滑精确。在对加工孔表面的能谱分析中发现了钠和溴的存在。除了这些元素外,在使用过的工具电极中还发现了钛和钒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machining and characterization of holes machined on a biomaterial Ti-6Al-4V ELI using an indigenously developed electrochemical machining cell with IEG control mechanism
Abstract This article presents a comprehensive study on the machining and characterization of the holes machined on a biomaterial Ti-6Al-4V ELI of 350 µm thickness with hollow stainless steel tool electrode of outside diameter 250 µm using the tailor-made µ-ECM experimental setup. The distinct feature of the experimental unit is an indigenously made pulse generator circuit and a closed-loop tool feed circuit made from a current-based sensor to retain a constant inter-electrode gap (IEG) between the tool electrode and the workpiece electrode during the machining operation. The machining process parameters are electrolyte concentration (wt % C), voltage (V) and duty factor (% DF). The output responses of interest are Circularity (C), Material Removal Rate (MRR), Taper Angle (TA), Stray Corrosion Zone (SCZ) Width and Radial Over Cut (ROC) of the hole machined. The maximum MRR obtained is 7.2 µg/s at the parametric combination of 12 V, 15 wt % C and 50% DF. The maximum circularity of 0.989 and minimum SCZ width of 309.796 µm is produced by the combination of 8 V, 15 wt % C and 30% DF. The minimum ROC of 181.091 µm is generated by the combination of 10 V, 20 wt % C and 50% DF. The combination of 12 V, 25 wt % C and 40% DF resulted a minimum TA of 0.235 degrees. The machined hole topography study based on the High Resolution Scanning Electron Microscope (HRSEM) images of all the machined holes revealed that the parametric combination of 8 V, 15 wt % C and 30% DF yielded uniform microstructure in the SCZ no pitting corrosion, smooth and precise hole edge. The presence of sodium and bromine is found in Energy Dispersive Spectroscopy (EDS) analysis of the machined hole surface. In addition to these elements, titanium and vanadium are found in the used tool electrode.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machining Science and Technology
Machining Science and Technology 工程技术-材料科学:综合
CiteScore
5.70
自引率
3.70%
发文量
18
审稿时长
6 months
期刊介绍: Machining Science and Technology publishes original scientific and technical papers and review articles on topics related to traditional and nontraditional machining processes performed on all materials—metals and advanced alloys, polymers, ceramics, composites, and biomaterials. Topics covered include: -machining performance of all materials, including lightweight materials- coated and special cutting tools: design and machining performance evaluation- predictive models for machining performance and optimization, including machining dynamics- measurement and analysis of machined surfaces- sustainable machining: dry, near-dry, or Minimum Quantity Lubrication (MQL) and cryogenic machining processes precision and micro/nano machining- design and implementation of in-process sensors for monitoring and control of machining performance- surface integrity in machining processes, including detection and characterization of machining damage- new and advanced abrasive machining processes: design and performance analysis- cutting fluids and special coolants/lubricants- nontraditional and hybrid machining processes, including EDM, ECM, laser and plasma-assisted machining, waterjet and abrasive waterjet machining
期刊最新文献
Investigation on the machining characteristics of AZ91 magnesium alloy using uncoated and CVD-diamond coated WC-Co inserts Combination of minimum quantity lubrication (MQL) with solid lubricant (SL): challenges, predictions and implications for sustainability Novel insights into conventional machining of metal additive manufactured components: a comprehensive review Multiobjective optimization of end milling parameters for enhanced machining performance on 42CrMo4 using machine learning and NSGA-III Flow field design and simulation in electrochemical machining for closed integral components
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1