{"title":"磨料水射流抛光硬质合金和聚晶金刚石工具的实验研究","authors":"J. Puoza","doi":"10.1504/ijat.2019.10025181","DOIUrl":null,"url":null,"abstract":"This research paper studies the material removal mechanism, influence of water jet pressure and jet impact angle on the polishing effect of super-hard tools surfaces and edges experimentally. The results showed that the water jet pressure and jet impact angle have great influence on the materials removal efficiency. The jet angle of 15° and pressure of 10 MPa resulted in better-polished surface of the cemented carbide tools. The rake face of polycrystalline diamond cutting tools experienced no significant change under low pressure of 5 Mpa. Nevertheless, at a jet impact angle of 75° and a pressure of 20 MPa, the edge of the polished polycrystalline diamond cutting tool was bright, smooth, and rounded with 'ductile erosion micro material removal mechanism' without any fracture. The results demonstrated that the built abrasive water jet polishing technology system can be used in the super-hard tools industry to improve on the tool's services life.","PeriodicalId":39039,"journal":{"name":"International Journal of Abrasive Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Experimental study on abrasive water-jet polishing of cemented carbide and polycrystalline diamond tools\",\"authors\":\"J. Puoza\",\"doi\":\"10.1504/ijat.2019.10025181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research paper studies the material removal mechanism, influence of water jet pressure and jet impact angle on the polishing effect of super-hard tools surfaces and edges experimentally. The results showed that the water jet pressure and jet impact angle have great influence on the materials removal efficiency. The jet angle of 15° and pressure of 10 MPa resulted in better-polished surface of the cemented carbide tools. The rake face of polycrystalline diamond cutting tools experienced no significant change under low pressure of 5 Mpa. Nevertheless, at a jet impact angle of 75° and a pressure of 20 MPa, the edge of the polished polycrystalline diamond cutting tool was bright, smooth, and rounded with 'ductile erosion micro material removal mechanism' without any fracture. The results demonstrated that the built abrasive water jet polishing technology system can be used in the super-hard tools industry to improve on the tool's services life.\",\"PeriodicalId\":39039,\"journal\":{\"name\":\"International Journal of Abrasive Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Abrasive Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijat.2019.10025181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Abrasive Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijat.2019.10025181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Experimental study on abrasive water-jet polishing of cemented carbide and polycrystalline diamond tools
This research paper studies the material removal mechanism, influence of water jet pressure and jet impact angle on the polishing effect of super-hard tools surfaces and edges experimentally. The results showed that the water jet pressure and jet impact angle have great influence on the materials removal efficiency. The jet angle of 15° and pressure of 10 MPa resulted in better-polished surface of the cemented carbide tools. The rake face of polycrystalline diamond cutting tools experienced no significant change under low pressure of 5 Mpa. Nevertheless, at a jet impact angle of 75° and a pressure of 20 MPa, the edge of the polished polycrystalline diamond cutting tool was bright, smooth, and rounded with 'ductile erosion micro material removal mechanism' without any fracture. The results demonstrated that the built abrasive water jet polishing technology system can be used in the super-hard tools industry to improve on the tool's services life.