{"title":"电离层辐射成像问题的投影有限维迭代正则化高斯-牛顿后验停止方法","authors":"M. Kokurin, A. E. Nedopekin, A. Semenova","doi":"10.1080/17415977.2021.1916818","DOIUrl":null,"url":null,"abstract":"We investigate a class of finite dimensional iteratively regularized Gauss–Newton methods for solving nonlinear irregular operator equations in a Hilbert space. The developed technique allows to investigate in a uniform style various discretization methods such as projection, quadrature and collocation schemes and to take into account available restrictions on the solution. We propose an a posteriori stopping rule for the iterative process and establish an accuracy estimate for obtained approximation. The regularized Gauss–Newton method combined with the quadrature discretization and the a posteriori iteration stopping is applied to a model ionospheric radiotomography problem. The problem is reduced to a nonlinear integral equation describing the phase shift of a sounding radio signal in dependence of the free electron concentration in the ionosphericplasma.Weestablish theunique solvability of the inverse problem in the class of analytic functions. ARTICLE HISTORY Received 19 September 2020 Accepted 5 April 2021","PeriodicalId":54926,"journal":{"name":"Inverse Problems in Science and Engineering","volume":"1 1","pages":"1-23"},"PeriodicalIF":1.1000,"publicationDate":"2021-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17415977.2021.1916818","citationCount":"0","resultStr":"{\"title\":\"Projected finite dimensional iteratively regularized Gauss–Newton method with a posteriori stopping for the ionospheric radiotomography problem\",\"authors\":\"M. Kokurin, A. E. Nedopekin, A. Semenova\",\"doi\":\"10.1080/17415977.2021.1916818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate a class of finite dimensional iteratively regularized Gauss–Newton methods for solving nonlinear irregular operator equations in a Hilbert space. The developed technique allows to investigate in a uniform style various discretization methods such as projection, quadrature and collocation schemes and to take into account available restrictions on the solution. We propose an a posteriori stopping rule for the iterative process and establish an accuracy estimate for obtained approximation. The regularized Gauss–Newton method combined with the quadrature discretization and the a posteriori iteration stopping is applied to a model ionospheric radiotomography problem. The problem is reduced to a nonlinear integral equation describing the phase shift of a sounding radio signal in dependence of the free electron concentration in the ionosphericplasma.Weestablish theunique solvability of the inverse problem in the class of analytic functions. ARTICLE HISTORY Received 19 September 2020 Accepted 5 April 2021\",\"PeriodicalId\":54926,\"journal\":{\"name\":\"Inverse Problems in Science and Engineering\",\"volume\":\"1 1\",\"pages\":\"1-23\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17415977.2021.1916818\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems in Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/17415977.2021.1916818\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems in Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17415977.2021.1916818","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Projected finite dimensional iteratively regularized Gauss–Newton method with a posteriori stopping for the ionospheric radiotomography problem
We investigate a class of finite dimensional iteratively regularized Gauss–Newton methods for solving nonlinear irregular operator equations in a Hilbert space. The developed technique allows to investigate in a uniform style various discretization methods such as projection, quadrature and collocation schemes and to take into account available restrictions on the solution. We propose an a posteriori stopping rule for the iterative process and establish an accuracy estimate for obtained approximation. The regularized Gauss–Newton method combined with the quadrature discretization and the a posteriori iteration stopping is applied to a model ionospheric radiotomography problem. The problem is reduced to a nonlinear integral equation describing the phase shift of a sounding radio signal in dependence of the free electron concentration in the ionosphericplasma.Weestablish theunique solvability of the inverse problem in the class of analytic functions. ARTICLE HISTORY Received 19 September 2020 Accepted 5 April 2021
期刊介绍:
Inverse Problems in Science and Engineering provides an international forum for the discussion of conceptual ideas and methods for the practical solution of applied inverse problems. The Journal aims to address the needs of practising engineers, mathematicians and researchers and to serve as a focal point for the quick communication of ideas. Papers must provide several non-trivial examples of practical applications. Multidisciplinary applied papers are particularly welcome.
Topics include:
-Shape design: determination of shape, size and location of domains (shape identification or optimization in acoustics, aerodynamics, electromagnets, etc; detection of voids and cracks).
-Material properties: determination of physical properties of media.
-Boundary values/initial values: identification of the proper boundary conditions and/or initial conditions (tomographic problems involving X-rays, ultrasonics, optics, thermal sources etc; determination of thermal, stress/strain, electromagnetic, fluid flow etc. boundary conditions on inaccessible boundaries; determination of initial chemical composition, etc.).
-Forces and sources: determination of the unknown external forces or inputs acting on a domain (structural dynamic modification and reconstruction) and internal concentrated and distributed sources/sinks (sources of heat, noise, electromagnetic radiation, etc.).
-Governing equations: inference of analytic forms of partial and/or integral equations governing the variation of measured field quantities.