Yonggang Li, D. Jiang, Lan Xu, Sixiang Zhang, P. Ji, H. Pan, B. Jiang, Z. Shen
{"title":"自然感染条件下玉米品种对玉米穗腐病镰刀菌的多样性和抗性评价","authors":"Yonggang Li, D. Jiang, Lan Xu, Sixiang Zhang, P. Ji, H. Pan, B. Jiang, Z. Shen","doi":"10.17221/81/2018-CJGPB","DOIUrl":null,"url":null,"abstract":"Fusarium ear rot in maize (Zea mays L.) is a serious disease in all maize-growing areas worldwide. A total of 454 fungal strains were isolated from 69 commercial maize hybrids grown in Harbin, China, and comprised Fusarium subglutinans (34.8%), F. proliferatum (31.3%), F. verticillioides (20%), F. graminearum (9.7%), and F. equiseti (4.2%). Among them, a complex of multiple species, F. subglutinans, F. proliferatum, and F. verticillioides are the dominant fungi causing ear rot. Among 59 commercial maize hybrids, eleven hybrids (18.6%) were found to be highly resistant to Fusarium ear rot. Simple sequence repeat (SSR) analysis using six pairs of primers resulted in 24 reproducible bands and cluster analysis separated the maize hybrids into eight groups. There was little genetic variation associated with disease resistance. No correlation was found between genetic diversity and disease resistance. ","PeriodicalId":50598,"journal":{"name":"Czech Journal of Genetics and Plant Breeding","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.17221/81/2018-CJGPB","citationCount":"8","resultStr":"{\"title\":\"Evaluation of diversity and resistance of maize varieties to Fusarium spp. causing ear rot in maize under conditions of natural infection\",\"authors\":\"Yonggang Li, D. Jiang, Lan Xu, Sixiang Zhang, P. Ji, H. Pan, B. Jiang, Z. Shen\",\"doi\":\"10.17221/81/2018-CJGPB\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fusarium ear rot in maize (Zea mays L.) is a serious disease in all maize-growing areas worldwide. A total of 454 fungal strains were isolated from 69 commercial maize hybrids grown in Harbin, China, and comprised Fusarium subglutinans (34.8%), F. proliferatum (31.3%), F. verticillioides (20%), F. graminearum (9.7%), and F. equiseti (4.2%). Among them, a complex of multiple species, F. subglutinans, F. proliferatum, and F. verticillioides are the dominant fungi causing ear rot. Among 59 commercial maize hybrids, eleven hybrids (18.6%) were found to be highly resistant to Fusarium ear rot. Simple sequence repeat (SSR) analysis using six pairs of primers resulted in 24 reproducible bands and cluster analysis separated the maize hybrids into eight groups. There was little genetic variation associated with disease resistance. No correlation was found between genetic diversity and disease resistance. \",\"PeriodicalId\":50598,\"journal\":{\"name\":\"Czech Journal of Genetics and Plant Breeding\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2019-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.17221/81/2018-CJGPB\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Czech Journal of Genetics and Plant Breeding\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.17221/81/2018-CJGPB\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Czech Journal of Genetics and Plant Breeding","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.17221/81/2018-CJGPB","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
Evaluation of diversity and resistance of maize varieties to Fusarium spp. causing ear rot in maize under conditions of natural infection
Fusarium ear rot in maize (Zea mays L.) is a serious disease in all maize-growing areas worldwide. A total of 454 fungal strains were isolated from 69 commercial maize hybrids grown in Harbin, China, and comprised Fusarium subglutinans (34.8%), F. proliferatum (31.3%), F. verticillioides (20%), F. graminearum (9.7%), and F. equiseti (4.2%). Among them, a complex of multiple species, F. subglutinans, F. proliferatum, and F. verticillioides are the dominant fungi causing ear rot. Among 59 commercial maize hybrids, eleven hybrids (18.6%) were found to be highly resistant to Fusarium ear rot. Simple sequence repeat (SSR) analysis using six pairs of primers resulted in 24 reproducible bands and cluster analysis separated the maize hybrids into eight groups. There was little genetic variation associated with disease resistance. No correlation was found between genetic diversity and disease resistance.
期刊介绍:
Original scientific papers, critical reviews articles and short communications from the field of theoretical and applied plant genetics, plant biotechnology and plant breeding. Papers are published in English.