Wenbo Zheng , Shiqin Wang , Kangda Tan , Yanjun Shen , Lihu Yang
{"title":"降雨强度对华北平原水源地地下水补给机制的影响","authors":"Wenbo Zheng , Shiqin Wang , Kangda Tan , Yanjun Shen , Lihu Yang","doi":"10.1016/j.apgeochem.2023.105742","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Understanding the origins of groundwater and its movement from mountain to plain during different high intensity rainfall events is critical for conserving water supplies, determining water-use policies and controlling pollution. These factors are also the keys for understanding the dominant processes in hydrological models. In this study, groundwater resources and recharge processes during heavy precipitation were explored by using </span>stable isotope tracers in the hilly area of Taihang Mountain. It was found that the δ</span><sup>2</sup>H and δ<sup>18</sup><span>O values of precipitation exhibited obvious precipitation amount effect during different precipitation intensity events. The stable isotopic values in groundwater and river water showed significantly varied during the single extreme heavy precipitation and the continuous heavy precipitation events. In the rainy season, precipitation amounts greater than 40 mm/d could effectively recharge the shallow groundwater in the study area. By comparing the spatial isotopic distribution of groundwater, soil water, and river water with precipitation, we showed distinct groundwater recharge patterns in terms of their water resources, timing, and the degree of river water and groundwater interaction during the single extreme heavy precipitation and the continuous heavy precipitation. After the single extreme heavy precipitation, the δ</span><sup>2</sup>H and δ<sup>18</sup><span>O values of groundwater, soil water, and river water showed stable over time and had the same similar variations, suggested that the groundwater recharge was mainly dominated by precipitation with preferential flow or bypass flow. While after the continuous heavy precipitation, the variation of δ</span><sup>2</sup>H and δ<sup>18</sup>O in all water is consistent with the previous precipitation, which shown a mixing effect of previous enrich precipitation and depleted heavy precipitation, suggested that groundwater source was dominated by a continuous recharge of previous heavier precipitation with translatory flow. The groundwater main recharge mechanism is not constant, but changes with rainfall intensity. The rainfall intensity play an important role in groundwater recharge change affecting runoff process. Overall, this paper presents a new insight to understand the effect of rainfall intensity on hydrological process, which could be used to provide vital information in the semi-humid and semi-arid regions where water resources are critical in climate change adaptation strategies.</p></div>","PeriodicalId":8064,"journal":{"name":"Applied Geochemistry","volume":"155 ","pages":"Article 105742"},"PeriodicalIF":3.1000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rainfall intensity affects the recharge mechanisms of groundwater in a headwater basin of the North China plain\",\"authors\":\"Wenbo Zheng , Shiqin Wang , Kangda Tan , Yanjun Shen , Lihu Yang\",\"doi\":\"10.1016/j.apgeochem.2023.105742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Understanding the origins of groundwater and its movement from mountain to plain during different high intensity rainfall events is critical for conserving water supplies, determining water-use policies and controlling pollution. These factors are also the keys for understanding the dominant processes in hydrological models. In this study, groundwater resources and recharge processes during heavy precipitation were explored by using </span>stable isotope tracers in the hilly area of Taihang Mountain. It was found that the δ</span><sup>2</sup>H and δ<sup>18</sup><span>O values of precipitation exhibited obvious precipitation amount effect during different precipitation intensity events. The stable isotopic values in groundwater and river water showed significantly varied during the single extreme heavy precipitation and the continuous heavy precipitation events. In the rainy season, precipitation amounts greater than 40 mm/d could effectively recharge the shallow groundwater in the study area. By comparing the spatial isotopic distribution of groundwater, soil water, and river water with precipitation, we showed distinct groundwater recharge patterns in terms of their water resources, timing, and the degree of river water and groundwater interaction during the single extreme heavy precipitation and the continuous heavy precipitation. After the single extreme heavy precipitation, the δ</span><sup>2</sup>H and δ<sup>18</sup><span>O values of groundwater, soil water, and river water showed stable over time and had the same similar variations, suggested that the groundwater recharge was mainly dominated by precipitation with preferential flow or bypass flow. While after the continuous heavy precipitation, the variation of δ</span><sup>2</sup>H and δ<sup>18</sup>O in all water is consistent with the previous precipitation, which shown a mixing effect of previous enrich precipitation and depleted heavy precipitation, suggested that groundwater source was dominated by a continuous recharge of previous heavier precipitation with translatory flow. The groundwater main recharge mechanism is not constant, but changes with rainfall intensity. The rainfall intensity play an important role in groundwater recharge change affecting runoff process. Overall, this paper presents a new insight to understand the effect of rainfall intensity on hydrological process, which could be used to provide vital information in the semi-humid and semi-arid regions where water resources are critical in climate change adaptation strategies.</p></div>\",\"PeriodicalId\":8064,\"journal\":{\"name\":\"Applied Geochemistry\",\"volume\":\"155 \",\"pages\":\"Article 105742\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Geochemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0883292723001877\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0883292723001877","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Rainfall intensity affects the recharge mechanisms of groundwater in a headwater basin of the North China plain
Understanding the origins of groundwater and its movement from mountain to plain during different high intensity rainfall events is critical for conserving water supplies, determining water-use policies and controlling pollution. These factors are also the keys for understanding the dominant processes in hydrological models. In this study, groundwater resources and recharge processes during heavy precipitation were explored by using stable isotope tracers in the hilly area of Taihang Mountain. It was found that the δ2H and δ18O values of precipitation exhibited obvious precipitation amount effect during different precipitation intensity events. The stable isotopic values in groundwater and river water showed significantly varied during the single extreme heavy precipitation and the continuous heavy precipitation events. In the rainy season, precipitation amounts greater than 40 mm/d could effectively recharge the shallow groundwater in the study area. By comparing the spatial isotopic distribution of groundwater, soil water, and river water with precipitation, we showed distinct groundwater recharge patterns in terms of their water resources, timing, and the degree of river water and groundwater interaction during the single extreme heavy precipitation and the continuous heavy precipitation. After the single extreme heavy precipitation, the δ2H and δ18O values of groundwater, soil water, and river water showed stable over time and had the same similar variations, suggested that the groundwater recharge was mainly dominated by precipitation with preferential flow or bypass flow. While after the continuous heavy precipitation, the variation of δ2H and δ18O in all water is consistent with the previous precipitation, which shown a mixing effect of previous enrich precipitation and depleted heavy precipitation, suggested that groundwater source was dominated by a continuous recharge of previous heavier precipitation with translatory flow. The groundwater main recharge mechanism is not constant, but changes with rainfall intensity. The rainfall intensity play an important role in groundwater recharge change affecting runoff process. Overall, this paper presents a new insight to understand the effect of rainfall intensity on hydrological process, which could be used to provide vital information in the semi-humid and semi-arid regions where water resources are critical in climate change adaptation strategies.
期刊介绍:
Applied Geochemistry is an international journal devoted to publication of original research papers, rapid research communications and selected review papers in geochemistry and urban geochemistry which have some practical application to an aspect of human endeavour, such as the preservation of the environment, health, waste disposal and the search for resources. Papers on applications of inorganic, organic and isotope geochemistry and geochemical processes are therefore welcome provided they meet the main criterion. Spatial and temporal monitoring case studies are only of interest to our international readership if they present new ideas of broad application.
Topics covered include: (1) Environmental geochemistry (including natural and anthropogenic aspects, and protection and remediation strategies); (2) Hydrogeochemistry (surface and groundwater); (3) Medical (urban) geochemistry; (4) The search for energy resources (in particular unconventional oil and gas or emerging metal resources); (5) Energy exploitation (in particular geothermal energy and CCS); (6) Upgrading of energy and mineral resources where there is a direct geochemical application; and (7) Waste disposal, including nuclear waste disposal.