墨西哥尤卡坦半岛中等高度热带森林地面生物量制图中Landsat、气候和LiDAR数据的协同作用

IF 0.6 4区 农林科学 Q3 Agricultural and Biological Sciences Revista Chapingo Serie Ciencias Forestales Y Del Ambiente Pub Date : 2021-08-31 DOI:10.5154/r.rchscfa.2020.08.050
A. D. Ortiz-Reyes, J. Valdez-Lazalde, G. Ángeles-Pérez, H. D. L. Santos-Posadas, L. Schneider, C. Aguirre-Salado, A. Peduzzi, Postgrado en Ciencias Forestales Colegio de Postgraduados
{"title":"墨西哥尤卡坦半岛中等高度热带森林地面生物量制图中Landsat、气候和LiDAR数据的协同作用","authors":"A. D. Ortiz-Reyes, J. Valdez-Lazalde, G. Ángeles-Pérez, H. D. L. Santos-Posadas, L. Schneider, C. Aguirre-Salado, A. Peduzzi, Postgrado en Ciencias Forestales Colegio de Postgraduados","doi":"10.5154/r.rchscfa.2020.08.050","DOIUrl":null,"url":null,"abstract":"Introduction: Tropical forests represent complex and dynamic ecosystems that cover extensive areas, hence the importance of determining biomass content and representing spatial variability. Objective: Estimating and mapping aboveground biomass and its associated uncertainty for medium-stature semi-evergreen (SMSP) and semi-deciduous (SMSC) tropical forests of the Yucatan Peninsula. Materials and methods: Aboveground biomass was estimated as a function of explanatory variables taken from Landsat images and climatic variables, using the random Forest algorithm. Aboveground biomass was mapped from previous biomass estimates for stripes of the territory with the presence of LiDAR (Light Detection And Ranging) and field data. Uncertainty at the pixel level was estimated as the coefficient of variation. Results and discussion: A combination of climatic and spectral variables showed acceptable capacity to estimate biomass in the medium-stature semi-evergreen and semi-deciduous tropical forest with an explained variance of 50 % and RMSE (root mean squared error) of 34.2 Mg·ha -1 and 26.2 Mg·ha -1 , respectively, prevailing climate variables. SMSP biomass ranged from 4.0 to 185.7 Mg·ha -1 and SMSC ranged from 11.7 to 117 Mg·ha -1 . The lowest values of uncertainty were recorded for the medium-stature semi-evergreen tropical forest, being higher in areas with lower amounts of aboveground biomass. Conclusion: Aboveground biomass was estimated and mapped by the combined use of auxiliary variables with an acceptable accuracy, against uncertainty of predictions, which represents an opportunity for future improvement.","PeriodicalId":54479,"journal":{"name":"Revista Chapingo Serie Ciencias Forestales Y Del Ambiente","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Synergy of Landsat, climate and LiDAR data for aboveground biomass mapping in medium-stature tropical forests of the Yucatan Peninsula, Mexico\",\"authors\":\"A. D. Ortiz-Reyes, J. Valdez-Lazalde, G. Ángeles-Pérez, H. D. L. Santos-Posadas, L. Schneider, C. Aguirre-Salado, A. Peduzzi, Postgrado en Ciencias Forestales Colegio de Postgraduados\",\"doi\":\"10.5154/r.rchscfa.2020.08.050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: Tropical forests represent complex and dynamic ecosystems that cover extensive areas, hence the importance of determining biomass content and representing spatial variability. Objective: Estimating and mapping aboveground biomass and its associated uncertainty for medium-stature semi-evergreen (SMSP) and semi-deciduous (SMSC) tropical forests of the Yucatan Peninsula. Materials and methods: Aboveground biomass was estimated as a function of explanatory variables taken from Landsat images and climatic variables, using the random Forest algorithm. Aboveground biomass was mapped from previous biomass estimates for stripes of the territory with the presence of LiDAR (Light Detection And Ranging) and field data. Uncertainty at the pixel level was estimated as the coefficient of variation. Results and discussion: A combination of climatic and spectral variables showed acceptable capacity to estimate biomass in the medium-stature semi-evergreen and semi-deciduous tropical forest with an explained variance of 50 % and RMSE (root mean squared error) of 34.2 Mg·ha -1 and 26.2 Mg·ha -1 , respectively, prevailing climate variables. SMSP biomass ranged from 4.0 to 185.7 Mg·ha -1 and SMSC ranged from 11.7 to 117 Mg·ha -1 . The lowest values of uncertainty were recorded for the medium-stature semi-evergreen tropical forest, being higher in areas with lower amounts of aboveground biomass. Conclusion: Aboveground biomass was estimated and mapped by the combined use of auxiliary variables with an acceptable accuracy, against uncertainty of predictions, which represents an opportunity for future improvement.\",\"PeriodicalId\":54479,\"journal\":{\"name\":\"Revista Chapingo Serie Ciencias Forestales Y Del Ambiente\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Chapingo Serie Ciencias Forestales Y Del Ambiente\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.5154/r.rchscfa.2020.08.050\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Chapingo Serie Ciencias Forestales Y Del Ambiente","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5154/r.rchscfa.2020.08.050","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 1

摘要

热带森林代表着覆盖广泛地区的复杂和动态的生态系统,因此确定生物量含量和表示空间变异性非常重要。目的:估算和绘制尤卡坦半岛热带中等高度半常绿(SMSP)和半落叶(SMSC)森林的地上生物量及其相关不确定性。材料和方法:使用随机森林算法,将地上生物量作为从Landsat图像和气候变量获取的解释变量的函数进行估算。利用LiDAR(光探测和测距)和现场数据,根据以前对该地区条纹的生物量估计绘制了地上生物量图。在像素级的不确定度估计为变异系数。结果和讨论:气候变量和光谱变量的组合显示出中等高度半常绿和半落叶热带森林生物量的可接受能力,解释方差为50%,RMSE(均方根误差)分别为34.2 Mg·ha -1和26.2 Mg·ha -1。SMSP生物量范围为4.0 ~ 185.7 Mg·ha -1, SMSC生物量范围为11.7 ~ 117 Mg·ha -1。中等高度半常绿热带森林的不确定性值最低,在地上生物量较低的地区,不确定性值较高。结论:结合使用辅助变量对地上生物量进行估算和绘制,具有可接受的精度,而不是预测的不确定性,这代表了未来改进的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synergy of Landsat, climate and LiDAR data for aboveground biomass mapping in medium-stature tropical forests of the Yucatan Peninsula, Mexico
Introduction: Tropical forests represent complex and dynamic ecosystems that cover extensive areas, hence the importance of determining biomass content and representing spatial variability. Objective: Estimating and mapping aboveground biomass and its associated uncertainty for medium-stature semi-evergreen (SMSP) and semi-deciduous (SMSC) tropical forests of the Yucatan Peninsula. Materials and methods: Aboveground biomass was estimated as a function of explanatory variables taken from Landsat images and climatic variables, using the random Forest algorithm. Aboveground biomass was mapped from previous biomass estimates for stripes of the territory with the presence of LiDAR (Light Detection And Ranging) and field data. Uncertainty at the pixel level was estimated as the coefficient of variation. Results and discussion: A combination of climatic and spectral variables showed acceptable capacity to estimate biomass in the medium-stature semi-evergreen and semi-deciduous tropical forest with an explained variance of 50 % and RMSE (root mean squared error) of 34.2 Mg·ha -1 and 26.2 Mg·ha -1 , respectively, prevailing climate variables. SMSP biomass ranged from 4.0 to 185.7 Mg·ha -1 and SMSC ranged from 11.7 to 117 Mg·ha -1 . The lowest values of uncertainty were recorded for the medium-stature semi-evergreen tropical forest, being higher in areas with lower amounts of aboveground biomass. Conclusion: Aboveground biomass was estimated and mapped by the combined use of auxiliary variables with an acceptable accuracy, against uncertainty of predictions, which represents an opportunity for future improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
0
审稿时长
>12 weeks
期刊介绍: The Revista Chapingo Serie Ciencias Forestales y del Ambiente (RCHSCFA) is a scientific journal that aims to raise awareness of high-quality research products related to forest, arid, temperate and tropical environments in the world. Since its foundation in 1994, the RCHSCFA has served as a space for scientific dissemination and discussion at a national and international level among academics, researchers, undergraduate and graduate students, forest managers and public/private entities that are interested in the forest environment. All content published in the journal first goes through a strict triple-blind review process and is published in the following formats: Scientific Articles, Review Articles, Methodologies, Technical or Technological Notes.
期刊最新文献
Uso de vehículos aéreos no tripulados para la estimación de almacén de carbono en biomasa aérea de matorral subtropical Cambios en la diversidad y estructura arbórea de un bosque templado bajo dos tratamientos silvícolas en Durango, México Cambios en la diversidad y estructura arbórea de un bosque templado bajo dos tratamientos silvícolas en Durango, México Efecto del tiempo de lixiviación y posición de las semillas en la germinación y características vegetativas de Moringa peregrina (Forssk.) Fiori Biología de la generación sexual de Loxaulus hyalinus (Hymenoptera: Cynipidae) en encinares de Quercus laeta Liebm. de la Ciudad de México
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1