一种适用于多层物联网医疗保健系统的高效雾层任务调度算法

R. Behera, Amrut Patro, K. Reddy, D. S. Roy
{"title":"一种适用于多层物联网医疗保健系统的高效雾层任务调度算法","authors":"R. Behera, Amrut Patro, K. Reddy, D. S. Roy","doi":"10.4018/ijrqeh.308802","DOIUrl":null,"url":null,"abstract":"IoT-based healthcare systems are becoming popular due to the extreme benefits patients, families, physicians, hospitals, and insurance companies are getting. Cloud is used traditionally for almost every IoT application, but cloud located far away from the devices resulted in an uncertain latency in providing services. At this point, fog computing emerged as the best alternative to provide such real-time services to delay-sensitive IoT applications. However, with the surge of patients, fog's limited resources may fail to handle the explosive growth in requests requiring advanced monitoring-based prioritization of tasks to meet the QoS requirements. To this end, in this paper, a level monitoring task scheduling (LMTS) algorithm is proposed for healthcare applications in fog to provide an immediate response to the delay-sensitive tasks with minimum delay and network usage. The proposed algorithm has been simulated using the Cloudsim simulator, and the results obtained demonstrated the efficacy of the proposed model.","PeriodicalId":36298,"journal":{"name":"International Journal of Reliable and Quality E-Healthcare","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Efficient Fog Layer Task Scheduling Algorithm for Multi-Tiered IoT Healthcare Systems\",\"authors\":\"R. Behera, Amrut Patro, K. Reddy, D. S. Roy\",\"doi\":\"10.4018/ijrqeh.308802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"IoT-based healthcare systems are becoming popular due to the extreme benefits patients, families, physicians, hospitals, and insurance companies are getting. Cloud is used traditionally for almost every IoT application, but cloud located far away from the devices resulted in an uncertain latency in providing services. At this point, fog computing emerged as the best alternative to provide such real-time services to delay-sensitive IoT applications. However, with the surge of patients, fog's limited resources may fail to handle the explosive growth in requests requiring advanced monitoring-based prioritization of tasks to meet the QoS requirements. To this end, in this paper, a level monitoring task scheduling (LMTS) algorithm is proposed for healthcare applications in fog to provide an immediate response to the delay-sensitive tasks with minimum delay and network usage. The proposed algorithm has been simulated using the Cloudsim simulator, and the results obtained demonstrated the efficacy of the proposed model.\",\"PeriodicalId\":36298,\"journal\":{\"name\":\"International Journal of Reliable and Quality E-Healthcare\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Reliable and Quality E-Healthcare\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijrqeh.308802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Nursing\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Reliable and Quality E-Healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijrqeh.308802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Nursing","Score":null,"Total":0}
引用次数: 1

摘要

由于患者、家庭、医生、医院和保险公司获得的极端福利,基于物联网的医疗保健系统正变得越来越受欢迎。传统上,几乎所有物联网应用程序都使用云,但远离设备的云导致了提供服务的不确定延迟。在这一点上,雾计算成为为延迟敏感物联网应用提供此类实时服务的最佳替代方案。然而,随着患者的激增,fog有限的资源可能无法处理爆炸性增长的请求,这些请求需要对任务进行基于高级监控的优先级排序,以满足QoS要求。为此,本文针对雾中的医疗保健应用提出了一种级别监控任务调度(LMTS)算法,以最小的延迟和网络使用率对延迟敏感的任务提供即时响应。使用Cloudsim模拟器对所提出的算法进行了仿真,结果证明了所提出模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Efficient Fog Layer Task Scheduling Algorithm for Multi-Tiered IoT Healthcare Systems
IoT-based healthcare systems are becoming popular due to the extreme benefits patients, families, physicians, hospitals, and insurance companies are getting. Cloud is used traditionally for almost every IoT application, but cloud located far away from the devices resulted in an uncertain latency in providing services. At this point, fog computing emerged as the best alternative to provide such real-time services to delay-sensitive IoT applications. However, with the surge of patients, fog's limited resources may fail to handle the explosive growth in requests requiring advanced monitoring-based prioritization of tasks to meet the QoS requirements. To this end, in this paper, a level monitoring task scheduling (LMTS) algorithm is proposed for healthcare applications in fog to provide an immediate response to the delay-sensitive tasks with minimum delay and network usage. The proposed algorithm has been simulated using the Cloudsim simulator, and the results obtained demonstrated the efficacy of the proposed model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
43
期刊最新文献
Probabilistic Model of Patient Classification Using Bayesian Model A New Classification Model Based on Transfer Learning of DCNN and Stacknet for Fast Classification of Pneumonia Through X-Ray Images The Effect of E-Learning and Traditional Teaching Done Hand-in-Hand for First-Year M.B.B.S. Students Decentralized Blockchain-Enabled Employee Authentication System Hybrid Artificial Intelligence-Based Models for Prediction of Death Rate in India Due to COVID-19 Transmission
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1