解决锂离子电池层状结构阴极中的阳离子混合问题:综述

IF 9.9 2区 材料科学 Q1 Engineering Nano Materials Science Pub Date : 2023-12-01 DOI:10.1016/j.nanoms.2022.09.001
Jingxi Li , Gemeng Liang , Wei Zheng , Shilin Zhang , Kenneth Davey , Wei Kong Pang , Zaiping Guo
{"title":"解决锂离子电池层状结构阴极中的阳离子混合问题:综述","authors":"Jingxi Li ,&nbsp;Gemeng Liang ,&nbsp;Wei Zheng ,&nbsp;Shilin Zhang ,&nbsp;Kenneth Davey ,&nbsp;Wei Kong Pang ,&nbsp;Zaiping Guo","doi":"10.1016/j.nanoms.2022.09.001","DOIUrl":null,"url":null,"abstract":"<div><div>High-performance lithium-ion batteries (LIB) are important in powering emerging technologies. Cathodes are regarded as the bottleneck of increasing battery energy density, among which layered oxides are the most promising candidates for LIB. However, a limitation with layered oxides cathodes is the transition metal and Li site mixing, which significantly impacts battery capacity and cycling stability. Despite recent research on Li/Ni mixing, there is a lack of comprehensive understanding of the origin of cation mixing between the transition metal and Li; therefore, practical means to address it. Here, a critical review of cation mixing in layered cathodes has been provided, emphasising the understanding of cation mixing mechanisms and their impact on cathode material design. We list and compare advanced characterisation techniques to detect cation mixing in the material structure; examine methods to regulate the degree of cation mixing in layered oxides to boost battery capacity and cycling performance, and critically assess how these can be applied practically. An appraisal of future research directions, including superexchange interaction to stabilise structures and boost capacity retention has also been concluded. Findings will be of immediate benefit in the design of layered cathodes for high-performance rechargeable LIB and, therefore, of interest to researchers and manufacturers.</div></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"5 4","pages":"Pages 404-420"},"PeriodicalIF":9.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Addressing cation mixing in layered structured cathodes for lithium-ion batteries: A critical review\",\"authors\":\"Jingxi Li ,&nbsp;Gemeng Liang ,&nbsp;Wei Zheng ,&nbsp;Shilin Zhang ,&nbsp;Kenneth Davey ,&nbsp;Wei Kong Pang ,&nbsp;Zaiping Guo\",\"doi\":\"10.1016/j.nanoms.2022.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High-performance lithium-ion batteries (LIB) are important in powering emerging technologies. Cathodes are regarded as the bottleneck of increasing battery energy density, among which layered oxides are the most promising candidates for LIB. However, a limitation with layered oxides cathodes is the transition metal and Li site mixing, which significantly impacts battery capacity and cycling stability. Despite recent research on Li/Ni mixing, there is a lack of comprehensive understanding of the origin of cation mixing between the transition metal and Li; therefore, practical means to address it. Here, a critical review of cation mixing in layered cathodes has been provided, emphasising the understanding of cation mixing mechanisms and their impact on cathode material design. We list and compare advanced characterisation techniques to detect cation mixing in the material structure; examine methods to regulate the degree of cation mixing in layered oxides to boost battery capacity and cycling performance, and critically assess how these can be applied practically. An appraisal of future research directions, including superexchange interaction to stabilise structures and boost capacity retention has also been concluded. Findings will be of immediate benefit in the design of layered cathodes for high-performance rechargeable LIB and, therefore, of interest to researchers and manufacturers.</div></div>\",\"PeriodicalId\":33573,\"journal\":{\"name\":\"Nano Materials Science\",\"volume\":\"5 4\",\"pages\":\"Pages 404-420\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Materials Science\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589965122000496\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965122000496","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Addressing cation mixing in layered structured cathodes for lithium-ion batteries: A critical review
High-performance lithium-ion batteries (LIB) are important in powering emerging technologies. Cathodes are regarded as the bottleneck of increasing battery energy density, among which layered oxides are the most promising candidates for LIB. However, a limitation with layered oxides cathodes is the transition metal and Li site mixing, which significantly impacts battery capacity and cycling stability. Despite recent research on Li/Ni mixing, there is a lack of comprehensive understanding of the origin of cation mixing between the transition metal and Li; therefore, practical means to address it. Here, a critical review of cation mixing in layered cathodes has been provided, emphasising the understanding of cation mixing mechanisms and their impact on cathode material design. We list and compare advanced characterisation techniques to detect cation mixing in the material structure; examine methods to regulate the degree of cation mixing in layered oxides to boost battery capacity and cycling performance, and critically assess how these can be applied practically. An appraisal of future research directions, including superexchange interaction to stabilise structures and boost capacity retention has also been concluded. Findings will be of immediate benefit in the design of layered cathodes for high-performance rechargeable LIB and, therefore, of interest to researchers and manufacturers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Materials Science
Nano Materials Science Engineering-Mechanics of Materials
CiteScore
20.90
自引率
3.00%
发文量
294
审稿时长
9 weeks
期刊介绍: Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.
期刊最新文献
Beyond contribution of ionic liquids in nanostructuring polyaniline morphology; its effect on the properties of the polymerization medium The microstructural evolution and relaxation strengthening for nano-grained Ni upon low-temperature annealing High-performance self-driven broadband photoelectrochemical photodetector based on reduced graphene oxide/Bi2Te3 heterojunction Nanoscale air channel devices- inheritance and breakthrough of vacuum tube Construction of 3D aerogels consisting of cellulose and BNNSs bridged by AgNPs for enhancing thermal and tribological properties of polyurethane composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1