{"title":"向日葵细胞质雄性不育系及其杂交种的稳定性分析","authors":"V. Tyagi, S. K. Dhillon, P. Kaushik","doi":"10.1515/helia-2018-0013","DOIUrl":null,"url":null,"abstract":"Abstract Genetic makeup along with environmental stimuli affect the expression of a trait in plants. Drought tolerance in addition to stability of characters over a wide range of environmental conditions is not well studied in sunflower. Therefore, here we have performed a stability analysis study of sunflower genotypes. The experimental material comprised of 19 lines of sunflower comprising 9 alloplasmic cms lines from different wild sources along with one common maintainer from petiolaris source, 4 cms lines and one maintainer from cultivated source (cytoplasm from H. petiolaris), 4 restorer lines and 60 F1 hybrids (developed in line x tester design). The experiment was conducted over two years i. e. spring season 2011 and spring season 2012 over the two environments one normal irrigated and another water stress environment at Punjab Agricultural University, Ludhiana, India. The data were recorded for different morphophysiology, yield and quality trais and analysis as per standard procedures. The genotype×environment interaction was further partitioned into linear and non-linear components according to Eberhart and Russel model. Eleven sunflower hybrids were found to be stable across the environments for seed yield. While, sufficient variability was also recorded for the oil content with the highest oil percentage in the cross combination ARG-2A×P100R (34.61). Overall, this study provides useful information regarding the stability of newly developed and cytoplasmically diverse sunflower hybrids under north Indian conditions.","PeriodicalId":39086,"journal":{"name":"Helia","volume":"41 1","pages":"153 - 200"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/helia-2018-0013","citationCount":"10","resultStr":"{\"title\":\"Stability Analysis of Some Novel Cytoplasmic Male Sterile Sources of Sunflower and Their Hybrids\",\"authors\":\"V. Tyagi, S. K. Dhillon, P. Kaushik\",\"doi\":\"10.1515/helia-2018-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Genetic makeup along with environmental stimuli affect the expression of a trait in plants. Drought tolerance in addition to stability of characters over a wide range of environmental conditions is not well studied in sunflower. Therefore, here we have performed a stability analysis study of sunflower genotypes. The experimental material comprised of 19 lines of sunflower comprising 9 alloplasmic cms lines from different wild sources along with one common maintainer from petiolaris source, 4 cms lines and one maintainer from cultivated source (cytoplasm from H. petiolaris), 4 restorer lines and 60 F1 hybrids (developed in line x tester design). The experiment was conducted over two years i. e. spring season 2011 and spring season 2012 over the two environments one normal irrigated and another water stress environment at Punjab Agricultural University, Ludhiana, India. The data were recorded for different morphophysiology, yield and quality trais and analysis as per standard procedures. The genotype×environment interaction was further partitioned into linear and non-linear components according to Eberhart and Russel model. Eleven sunflower hybrids were found to be stable across the environments for seed yield. While, sufficient variability was also recorded for the oil content with the highest oil percentage in the cross combination ARG-2A×P100R (34.61). Overall, this study provides useful information regarding the stability of newly developed and cytoplasmically diverse sunflower hybrids under north Indian conditions.\",\"PeriodicalId\":39086,\"journal\":{\"name\":\"Helia\",\"volume\":\"41 1\",\"pages\":\"153 - 200\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/helia-2018-0013\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Helia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/helia-2018-0013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Helia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/helia-2018-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Stability Analysis of Some Novel Cytoplasmic Male Sterile Sources of Sunflower and Their Hybrids
Abstract Genetic makeup along with environmental stimuli affect the expression of a trait in plants. Drought tolerance in addition to stability of characters over a wide range of environmental conditions is not well studied in sunflower. Therefore, here we have performed a stability analysis study of sunflower genotypes. The experimental material comprised of 19 lines of sunflower comprising 9 alloplasmic cms lines from different wild sources along with one common maintainer from petiolaris source, 4 cms lines and one maintainer from cultivated source (cytoplasm from H. petiolaris), 4 restorer lines and 60 F1 hybrids (developed in line x tester design). The experiment was conducted over two years i. e. spring season 2011 and spring season 2012 over the two environments one normal irrigated and another water stress environment at Punjab Agricultural University, Ludhiana, India. The data were recorded for different morphophysiology, yield and quality trais and analysis as per standard procedures. The genotype×environment interaction was further partitioned into linear and non-linear components according to Eberhart and Russel model. Eleven sunflower hybrids were found to be stable across the environments for seed yield. While, sufficient variability was also recorded for the oil content with the highest oil percentage in the cross combination ARG-2A×P100R (34.61). Overall, this study provides useful information regarding the stability of newly developed and cytoplasmically diverse sunflower hybrids under north Indian conditions.