{"title":"欧拉-拉格朗日耦合方法对液滴环形流动欧拉表征的可预测性和优势","authors":"Digvijay Singh, A. Das","doi":"10.1088/1873-7005/ac34ec","DOIUrl":null,"url":null,"abstract":"Wavy annular flow and subsequent droplet dispersion in air-water two-phase flow has been studied numerically using conventional Eulerian volume of fluid (VOF) solver and coupled Eulerian-Lagrangian approach. The VOF based investigation has been reported to highlights the formation of droplet swarm and its population dynamics. Coupled Eulerian-Lagrangian method has also been shown to replicate similar features with lesser computational effort. Entrainment, deposition, fragmentation and unification are traced from the numerical simulation, which ultimately predicts the volume filling behavior of the droplets inside the tube. Flow kinematics around droplet is critically assessed numerically for finding out reasons behind deposition, fragmentation and unification. A comparative behavior between different velocity ratios of gas and liquid flow rates are presented which clearly shows higher entrainment rate as shear between annular liquid and gaseous core increases. An assessment of the droplet population in coupled Eulerian-Lagrangian method shows the generation of the smaller sized spherical droplet by entrainment and fragmentation route.","PeriodicalId":56311,"journal":{"name":"Fluid Dynamics Research","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Predictability and benefits of coupled Eulerian-Lagrangian approach over Eulerian characterization of droplet annular flow\",\"authors\":\"Digvijay Singh, A. Das\",\"doi\":\"10.1088/1873-7005/ac34ec\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wavy annular flow and subsequent droplet dispersion in air-water two-phase flow has been studied numerically using conventional Eulerian volume of fluid (VOF) solver and coupled Eulerian-Lagrangian approach. The VOF based investigation has been reported to highlights the formation of droplet swarm and its population dynamics. Coupled Eulerian-Lagrangian method has also been shown to replicate similar features with lesser computational effort. Entrainment, deposition, fragmentation and unification are traced from the numerical simulation, which ultimately predicts the volume filling behavior of the droplets inside the tube. Flow kinematics around droplet is critically assessed numerically for finding out reasons behind deposition, fragmentation and unification. A comparative behavior between different velocity ratios of gas and liquid flow rates are presented which clearly shows higher entrainment rate as shear between annular liquid and gaseous core increases. An assessment of the droplet population in coupled Eulerian-Lagrangian method shows the generation of the smaller sized spherical droplet by entrainment and fragmentation route.\",\"PeriodicalId\":56311,\"journal\":{\"name\":\"Fluid Dynamics Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Dynamics Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1873-7005/ac34ec\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1873-7005/ac34ec","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Predictability and benefits of coupled Eulerian-Lagrangian approach over Eulerian characterization of droplet annular flow
Wavy annular flow and subsequent droplet dispersion in air-water two-phase flow has been studied numerically using conventional Eulerian volume of fluid (VOF) solver and coupled Eulerian-Lagrangian approach. The VOF based investigation has been reported to highlights the formation of droplet swarm and its population dynamics. Coupled Eulerian-Lagrangian method has also been shown to replicate similar features with lesser computational effort. Entrainment, deposition, fragmentation and unification are traced from the numerical simulation, which ultimately predicts the volume filling behavior of the droplets inside the tube. Flow kinematics around droplet is critically assessed numerically for finding out reasons behind deposition, fragmentation and unification. A comparative behavior between different velocity ratios of gas and liquid flow rates are presented which clearly shows higher entrainment rate as shear between annular liquid and gaseous core increases. An assessment of the droplet population in coupled Eulerian-Lagrangian method shows the generation of the smaller sized spherical droplet by entrainment and fragmentation route.
期刊介绍:
Fluid Dynamics Research publishes original and creative works in all fields of fluid dynamics. The scope includes theoretical, numerical and experimental studies that contribute to the fundamental understanding and/or application of fluid phenomena.