水质对滨海盐碱渗滤液小球藻生长、光合色素及高价值产物积累的影响

IF 2.3 Q2 Environmental Science Journal of Water Reuse and Desalination Pub Date : 2021-01-25 DOI:10.2166/WRD.2021.088
Xiao-ya Liu, Yu-Chuau Hong, W. Gu
{"title":"水质对滨海盐碱渗滤液小球藻生长、光合色素及高价值产物积累的影响","authors":"Xiao-ya Liu, Yu-Chuau Hong, W. Gu","doi":"10.2166/WRD.2021.088","DOIUrl":null,"url":null,"abstract":"\n Using saline-alkali leachate to cultivate microalgae is an effective way to realize the utilization of wastewater and alleviate the shortage of water resources. Light source is usually used as an optimized parameter to further improve the cultivation efficiency of microalgae. In this work, the influence of light qualities on the growth and high-valued substances accumulation of Chlorella sp. HQ in coastal saline-alkali leachate were investigated. The specific growth rate of Chlorella in coastal saline-alkali leachate was 0.27–0.60 d−1. At the end of cultivation, the algal density under blue light reached 8.71 ± 0.15 × 107 cells·mL−1, which was significantly higher than the other light groups. The lipid content in the biomass was 29.31–62.95%, and the highest lipid content and TAGs content were obtained under red light and blue-white mixed light, respectively. Percentages of total chlorophylls (0.81–1.70%) and carotenoids (0.08–0.25%) were obtained in the final biomass of the coastal saline-alkali leachate. In addition, the contents of photosynthetic pigments and three high-valued products under mixed light were higher than those of monochromatic light, and the protein, total sugar and starch content under blue-red mixed light was 1.52–3.76 times, 1.54–3.68 times and 1.06–3.35 times of monochromatic blue light and red light, respectively.","PeriodicalId":17556,"journal":{"name":"Journal of Water Reuse and Desalination","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2021-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Influence of light quality on Chlorella growth, photosynthetic pigments and high-valued products accumulation in coastal saline-alkali leachate\",\"authors\":\"Xiao-ya Liu, Yu-Chuau Hong, W. Gu\",\"doi\":\"10.2166/WRD.2021.088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Using saline-alkali leachate to cultivate microalgae is an effective way to realize the utilization of wastewater and alleviate the shortage of water resources. Light source is usually used as an optimized parameter to further improve the cultivation efficiency of microalgae. In this work, the influence of light qualities on the growth and high-valued substances accumulation of Chlorella sp. HQ in coastal saline-alkali leachate were investigated. The specific growth rate of Chlorella in coastal saline-alkali leachate was 0.27–0.60 d−1. At the end of cultivation, the algal density under blue light reached 8.71 ± 0.15 × 107 cells·mL−1, which was significantly higher than the other light groups. The lipid content in the biomass was 29.31–62.95%, and the highest lipid content and TAGs content were obtained under red light and blue-white mixed light, respectively. Percentages of total chlorophylls (0.81–1.70%) and carotenoids (0.08–0.25%) were obtained in the final biomass of the coastal saline-alkali leachate. In addition, the contents of photosynthetic pigments and three high-valued products under mixed light were higher than those of monochromatic light, and the protein, total sugar and starch content under blue-red mixed light was 1.52–3.76 times, 1.54–3.68 times and 1.06–3.35 times of monochromatic blue light and red light, respectively.\",\"PeriodicalId\":17556,\"journal\":{\"name\":\"Journal of Water Reuse and Desalination\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2021-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Reuse and Desalination\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/WRD.2021.088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Reuse and Desalination","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/WRD.2021.088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 18

摘要

利用盐碱渗滤液培养微藻是实现废水利用、缓解水资源短缺的有效途径。光源通常被用作优化参数,以进一步提高微藻的培养效率。研究了光照条件对滨海盐碱渗滤液中小球藻生长和高价值物质积累的影响。小球藻在滨海盐碱渗滤液中的比生长速率为0.27–0.60 d−1。培养结束时,蓝光下的藻类密度达到8.71±0.15×107个细胞·mL−1,显著高于其他光照组。生物质中的脂质含量为29.31–62.95%,在红光和蓝白混合光下分别获得最高的脂质含量和TAGs含量。海岸盐碱渗滤液的最终生物量中总叶绿素(0.81–1.70%)和类胡萝卜素(0.08–0.25%)的百分比。此外,在混合光下,光合色素和三种高价值产物的含量高于单色光,在蓝-红混合光下蛋白质、总糖和淀粉的含量分别是单色蓝光和红光的1.52–3.76倍、1.54–3.68倍和1.06–3.35倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of light quality on Chlorella growth, photosynthetic pigments and high-valued products accumulation in coastal saline-alkali leachate
Using saline-alkali leachate to cultivate microalgae is an effective way to realize the utilization of wastewater and alleviate the shortage of water resources. Light source is usually used as an optimized parameter to further improve the cultivation efficiency of microalgae. In this work, the influence of light qualities on the growth and high-valued substances accumulation of Chlorella sp. HQ in coastal saline-alkali leachate were investigated. The specific growth rate of Chlorella in coastal saline-alkali leachate was 0.27–0.60 d−1. At the end of cultivation, the algal density under blue light reached 8.71 ± 0.15 × 107 cells·mL−1, which was significantly higher than the other light groups. The lipid content in the biomass was 29.31–62.95%, and the highest lipid content and TAGs content were obtained under red light and blue-white mixed light, respectively. Percentages of total chlorophylls (0.81–1.70%) and carotenoids (0.08–0.25%) were obtained in the final biomass of the coastal saline-alkali leachate. In addition, the contents of photosynthetic pigments and three high-valued products under mixed light were higher than those of monochromatic light, and the protein, total sugar and starch content under blue-red mixed light was 1.52–3.76 times, 1.54–3.68 times and 1.06–3.35 times of monochromatic blue light and red light, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Water Reuse and Desalination
Journal of Water Reuse and Desalination ENGINEERING, ENVIRONMENTAL-WATER RESOURCES
CiteScore
4.30
自引率
0.00%
发文量
23
审稿时长
16 weeks
期刊介绍: Journal of Water Reuse and Desalination publishes refereed review articles, theoretical and experimental research papers, new findings and issues of unplanned and planned reuse. The journal welcomes contributions from developing and developed countries.
期刊最新文献
Innovative strategies for treatment and management of saline water/wastewater Evaluation of UVLED disinfection for biofouling control during distribution of wastewater effluent Bioremoval efficiency and metabolomic profiles of cellular responses of Chlorella pyrenoidosa to phenol and 4-fluorophenol Construction and empirical research of the evaluation index system of environmental protection enterprises’ competitiveness based on the Delphi and AHP methods Deep learning algorithms were used to generate photovoltaic renewable energy in saline water analysis via an oxidation process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1