{"title":"低雷诺数下换热器管束涡激振动数值模拟","authors":"Asif Khan, S. Khushnood, N. Saqib, I. Shahid","doi":"10.3329/JNAME.V14I2.25894","DOIUrl":null,"url":null,"abstract":"It is sound recognized that when the tube is forced to vibrate or is naturally excited to sufficient amplitudes by flow-induced forces, cyclones peeling phenomena arises at downstream of a tube which clues to vibration in the tube. Two-dimensional numerical recreation model for the computation of flow induced vibration of heat exchanger tube bundle imperiled to cross- flow is proficient in current research. Computational Fluid Dynamics (CFD) tool, GAMBIT (grid generation) and ANSYS FLUENT (fluid flow analysis) are operated during numerical investigations. k-epsilon model is used to solve the Navier Stokes equations. Lift coefficient graph derived from analysis is used to predict the vortex shedding frequency using Fast Fourier Transform (FFT). The results of flow rate, Strouhal number, Reduced velocity, Natural frequency of tube as found from the experimental data has been verified numerically for a Reynolds number range of 4.45 × 104<Re <4.65 × 104 . It is concluded that experimental results are well in agreement with the numerical results.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2017-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3329/JNAME.V14I2.25894","citationCount":"1","resultStr":"{\"title\":\"Numerical simulation of vortex induced vibration in heat exchanger tube bundle at low Reynolds number\",\"authors\":\"Asif Khan, S. Khushnood, N. Saqib, I. Shahid\",\"doi\":\"10.3329/JNAME.V14I2.25894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is sound recognized that when the tube is forced to vibrate or is naturally excited to sufficient amplitudes by flow-induced forces, cyclones peeling phenomena arises at downstream of a tube which clues to vibration in the tube. Two-dimensional numerical recreation model for the computation of flow induced vibration of heat exchanger tube bundle imperiled to cross- flow is proficient in current research. Computational Fluid Dynamics (CFD) tool, GAMBIT (grid generation) and ANSYS FLUENT (fluid flow analysis) are operated during numerical investigations. k-epsilon model is used to solve the Navier Stokes equations. Lift coefficient graph derived from analysis is used to predict the vortex shedding frequency using Fast Fourier Transform (FFT). The results of flow rate, Strouhal number, Reduced velocity, Natural frequency of tube as found from the experimental data has been verified numerically for a Reynolds number range of 4.45 × 104<Re <4.65 × 104 . It is concluded that experimental results are well in agreement with the numerical results.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2017-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3329/JNAME.V14I2.25894\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/JNAME.V14I2.25894\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/JNAME.V14I2.25894","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Numerical simulation of vortex induced vibration in heat exchanger tube bundle at low Reynolds number
It is sound recognized that when the tube is forced to vibrate or is naturally excited to sufficient amplitudes by flow-induced forces, cyclones peeling phenomena arises at downstream of a tube which clues to vibration in the tube. Two-dimensional numerical recreation model for the computation of flow induced vibration of heat exchanger tube bundle imperiled to cross- flow is proficient in current research. Computational Fluid Dynamics (CFD) tool, GAMBIT (grid generation) and ANSYS FLUENT (fluid flow analysis) are operated during numerical investigations. k-epsilon model is used to solve the Navier Stokes equations. Lift coefficient graph derived from analysis is used to predict the vortex shedding frequency using Fast Fourier Transform (FFT). The results of flow rate, Strouhal number, Reduced velocity, Natural frequency of tube as found from the experimental data has been verified numerically for a Reynolds number range of 4.45 × 104
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.