5G环境下实时工业4.0应用的稳健边缘AI

Xiaofeng Zou, Kuan-Ching Li, Joey Tianyi Zhou, Wei Wei, Cen Chen
{"title":"5G环境下实时工业4.0应用的稳健边缘AI","authors":"Xiaofeng Zou, Kuan-Ching Li, Joey Tianyi Zhou, Wei Wei, Cen Chen","doi":"10.1109/MCOMSTD.0008.2100019","DOIUrl":null,"url":null,"abstract":"Internet of Things (IoT) technologies, including drones, can efficiently capture industrial data, promoting the fourth industrial revolution, Industry 4.0. Moreover, as the 5G technologies evolve, Edge AI can push the AI programs from the remote cloud to the network edges close to end devices, enabling reliable and low-latency intelligent services. Compared with traditional applications, Industry 4.0 applications require more accuracy and lower latency. Most importantly, the robustness of Edge AI system is also critical for Industry 4.0 applications. In this work, we propose a robust Edge AI system for real-time industry 4.0 applications. Our proposed robust AI system can conduct model combination design and model deployment design based on the demands of applications, for example, application accuracy and application latency. Our system is also robust to physical system failures and resumes running intermediately when physical system failures occur.","PeriodicalId":36719,"journal":{"name":"IEEE Communications Standards Magazine","volume":"7 1","pages":"64-70"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Edge AI for Real-Time Industry 4.0 Applications in 5G Environment\",\"authors\":\"Xiaofeng Zou, Kuan-Ching Li, Joey Tianyi Zhou, Wei Wei, Cen Chen\",\"doi\":\"10.1109/MCOMSTD.0008.2100019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Internet of Things (IoT) technologies, including drones, can efficiently capture industrial data, promoting the fourth industrial revolution, Industry 4.0. Moreover, as the 5G technologies evolve, Edge AI can push the AI programs from the remote cloud to the network edges close to end devices, enabling reliable and low-latency intelligent services. Compared with traditional applications, Industry 4.0 applications require more accuracy and lower latency. Most importantly, the robustness of Edge AI system is also critical for Industry 4.0 applications. In this work, we propose a robust Edge AI system for real-time industry 4.0 applications. Our proposed robust AI system can conduct model combination design and model deployment design based on the demands of applications, for example, application accuracy and application latency. Our system is also robust to physical system failures and resumes running intermediately when physical system failures occur.\",\"PeriodicalId\":36719,\"journal\":{\"name\":\"IEEE Communications Standards Magazine\",\"volume\":\"7 1\",\"pages\":\"64-70\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Standards Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCOMSTD.0008.2100019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Standards Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCOMSTD.0008.2100019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

包括无人机在内的物联网技术可以有效地捕捉工业数据,推动第四次工业革命——工业4.0。此外,随着5G技术的发展,Edge AI可以将人工智能程序从远程云推送到靠近终端设备的网络边缘,实现可靠、低延迟的智能服务。与传统应用程序相比,工业4.0应用程序要求更高的准确性和更低的延迟。最重要的是,Edge AI系统的稳健性对于工业4.0应用也至关重要。在这项工作中,我们提出了一个用于实时工业4.0应用的强大的Edge AI系统。我们提出的稳健人工智能系统可以根据应用程序的需求,例如应用程序的准确性和应用程序的延迟,进行模型组合设计和模型部署设计。我们的系统对物理系统故障也很稳健,并在物理系统故障发生时立即恢复运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust Edge AI for Real-Time Industry 4.0 Applications in 5G Environment
Internet of Things (IoT) technologies, including drones, can efficiently capture industrial data, promoting the fourth industrial revolution, Industry 4.0. Moreover, as the 5G technologies evolve, Edge AI can push the AI programs from the remote cloud to the network edges close to end devices, enabling reliable and low-latency intelligent services. Compared with traditional applications, Industry 4.0 applications require more accuracy and lower latency. Most importantly, the robustness of Edge AI system is also critical for Industry 4.0 applications. In this work, we propose a robust Edge AI system for real-time industry 4.0 applications. Our proposed robust AI system can conduct model combination design and model deployment design based on the demands of applications, for example, application accuracy and application latency. Our system is also robust to physical system failures and resumes running intermediately when physical system failures occur.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.80
自引率
0.00%
发文量
55
期刊最新文献
IEEE 802.11BB Reference Channel Models For Light Communications Interface To Security Functions: An Overview And Comparison Of I2nsf And Openc2 Further Enhanced Urllc And Industrial IoT Support With Release-17 5g New Radio A Secure Ndn-based Architecture For Electronic Voting In 6g Space-air-ground Integrated Networks For Urllc In Spatial Digital Twins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1