{"title":"纹状体腺苷A2A受体异四聚体的功能和神经保护作用","authors":"S. Ferré, F. Ciruela","doi":"10.1089/caff.2019.0008","DOIUrl":null,"url":null,"abstract":"In the striatum, adenosine A2A receptors (A2AR) are mainly expressed within the soma and dendrites of the striatopallidal neuron. A predominant proportion of these striatal postsynaptic A2AR form part of the macromolecular complexes that include A2AR-dopamine D2 receptor (D2R) heteromers, Golf and Gi/o proteins, and the effector adenylyl cyclase (AC), subtype AC5. The A2AR-D2R heteromers have a tetrameric structure, constituted by A2AR and D2R homomers. By means of reciprocal antagonistic allosteric interactions and antagonistic interactions at the effector level between adenosine and dopamine, the A2AR-D2R heterotetramer-AC5 complex acts an integrative molecular device, which determines a switch between the adenosine-facilitated activation and the dopamine-facilitated inhibition of the striatopallidal neuron. Striatal adenosine also plays an important presynaptic modulatory role, driving the function of corticostriatal terminals. This control is mediated by adenosine A1 receptors (A1R) and A2AR, which establish intermolecular interactions forming A1R-A2AR heterotetramers. Here, we review the functional role of both presynaptic and postsynaptic striatal A2AR heterotetramers as well as their possible neuroprotective role. We hypothesize that alterations in the homomer/heteromer stoichiometry (i.e., increase or decrease in the proportion of A2AR forming homomers or heteromers) are pathogenetically involved in neurological disorders, specifically in Parkinson's disease and restless legs syndrome.","PeriodicalId":15112,"journal":{"name":"Journal of Caffeine and Adenosine Research","volume":"9 1","pages":"89 - 97"},"PeriodicalIF":1.7000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/caff.2019.0008","citationCount":"29","resultStr":"{\"title\":\"Functional and Neuroprotective Role of Striatal Adenosine A2A Receptor Heterotetramers\",\"authors\":\"S. Ferré, F. Ciruela\",\"doi\":\"10.1089/caff.2019.0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the striatum, adenosine A2A receptors (A2AR) are mainly expressed within the soma and dendrites of the striatopallidal neuron. A predominant proportion of these striatal postsynaptic A2AR form part of the macromolecular complexes that include A2AR-dopamine D2 receptor (D2R) heteromers, Golf and Gi/o proteins, and the effector adenylyl cyclase (AC), subtype AC5. The A2AR-D2R heteromers have a tetrameric structure, constituted by A2AR and D2R homomers. By means of reciprocal antagonistic allosteric interactions and antagonistic interactions at the effector level between adenosine and dopamine, the A2AR-D2R heterotetramer-AC5 complex acts an integrative molecular device, which determines a switch between the adenosine-facilitated activation and the dopamine-facilitated inhibition of the striatopallidal neuron. Striatal adenosine also plays an important presynaptic modulatory role, driving the function of corticostriatal terminals. This control is mediated by adenosine A1 receptors (A1R) and A2AR, which establish intermolecular interactions forming A1R-A2AR heterotetramers. Here, we review the functional role of both presynaptic and postsynaptic striatal A2AR heterotetramers as well as their possible neuroprotective role. We hypothesize that alterations in the homomer/heteromer stoichiometry (i.e., increase or decrease in the proportion of A2AR forming homomers or heteromers) are pathogenetically involved in neurological disorders, specifically in Parkinson's disease and restless legs syndrome.\",\"PeriodicalId\":15112,\"journal\":{\"name\":\"Journal of Caffeine and Adenosine Research\",\"volume\":\"9 1\",\"pages\":\"89 - 97\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/caff.2019.0008\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Caffeine and Adenosine Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/caff.2019.0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Caffeine and Adenosine Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/caff.2019.0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Functional and Neuroprotective Role of Striatal Adenosine A2A Receptor Heterotetramers
In the striatum, adenosine A2A receptors (A2AR) are mainly expressed within the soma and dendrites of the striatopallidal neuron. A predominant proportion of these striatal postsynaptic A2AR form part of the macromolecular complexes that include A2AR-dopamine D2 receptor (D2R) heteromers, Golf and Gi/o proteins, and the effector adenylyl cyclase (AC), subtype AC5. The A2AR-D2R heteromers have a tetrameric structure, constituted by A2AR and D2R homomers. By means of reciprocal antagonistic allosteric interactions and antagonistic interactions at the effector level between adenosine and dopamine, the A2AR-D2R heterotetramer-AC5 complex acts an integrative molecular device, which determines a switch between the adenosine-facilitated activation and the dopamine-facilitated inhibition of the striatopallidal neuron. Striatal adenosine also plays an important presynaptic modulatory role, driving the function of corticostriatal terminals. This control is mediated by adenosine A1 receptors (A1R) and A2AR, which establish intermolecular interactions forming A1R-A2AR heterotetramers. Here, we review the functional role of both presynaptic and postsynaptic striatal A2AR heterotetramers as well as their possible neuroprotective role. We hypothesize that alterations in the homomer/heteromer stoichiometry (i.e., increase or decrease in the proportion of A2AR forming homomers or heteromers) are pathogenetically involved in neurological disorders, specifically in Parkinson's disease and restless legs syndrome.