{"title":"通过相互作用纳米颗粒激活多种功能","authors":"Morgan Chandler, J. Halman, Emil F Khisamutdinov","doi":"10.1515/rnan-2017-0003","DOIUrl":null,"url":null,"abstract":"Abstract Nucleic acids are biocompatible, robust, and highly versatile polymers that can be used to design fine-tunable and dynamically responsive nanostructures. In this report, we focus our attention to recently introduced concepts of interdependent, cognate nucleic acid nanoparticles assembly that take advantage of dynamic interactions and consequent shape-switching to trigger the activation of multiple functionalities. Particularly, we discuss re-association of thermodynamically driven complementary nanocubes (“cube” and complementary “anti-cube”) into functional duplexes that do not require toehold interactions or extensive computational design, bringing a new perspective for utility of nucleic acid nanoparticles as a drug carriers, biosensors, and templates for the formation of siRNA duplexes.","PeriodicalId":93282,"journal":{"name":"DNA and RNA nanotechnology","volume":"4 1","pages":"24 - 26"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/rnan-2017-0003","citationCount":"0","resultStr":"{\"title\":\"Activation of Multiple Functionalities Through Interacting Nanoparticles\",\"authors\":\"Morgan Chandler, J. Halman, Emil F Khisamutdinov\",\"doi\":\"10.1515/rnan-2017-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Nucleic acids are biocompatible, robust, and highly versatile polymers that can be used to design fine-tunable and dynamically responsive nanostructures. In this report, we focus our attention to recently introduced concepts of interdependent, cognate nucleic acid nanoparticles assembly that take advantage of dynamic interactions and consequent shape-switching to trigger the activation of multiple functionalities. Particularly, we discuss re-association of thermodynamically driven complementary nanocubes (“cube” and complementary “anti-cube”) into functional duplexes that do not require toehold interactions or extensive computational design, bringing a new perspective for utility of nucleic acid nanoparticles as a drug carriers, biosensors, and templates for the formation of siRNA duplexes.\",\"PeriodicalId\":93282,\"journal\":{\"name\":\"DNA and RNA nanotechnology\",\"volume\":\"4 1\",\"pages\":\"24 - 26\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/rnan-2017-0003\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA and RNA nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/rnan-2017-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA and RNA nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rnan-2017-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Activation of Multiple Functionalities Through Interacting Nanoparticles
Abstract Nucleic acids are biocompatible, robust, and highly versatile polymers that can be used to design fine-tunable and dynamically responsive nanostructures. In this report, we focus our attention to recently introduced concepts of interdependent, cognate nucleic acid nanoparticles assembly that take advantage of dynamic interactions and consequent shape-switching to trigger the activation of multiple functionalities. Particularly, we discuss re-association of thermodynamically driven complementary nanocubes (“cube” and complementary “anti-cube”) into functional duplexes that do not require toehold interactions or extensive computational design, bringing a new perspective for utility of nucleic acid nanoparticles as a drug carriers, biosensors, and templates for the formation of siRNA duplexes.