用于Wsn中恶意软件检测的浅层和深度学习组合模型

IF 0.8 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING International Journal of Image and Graphics Pub Date : 2023-09-07 DOI:10.1142/s0219467825500342
Madhavarapu Chandan, S. G. Santhi, T. Srinivasa Rao
{"title":"用于Wsn中恶意软件检测的浅层和深度学习组合模型","authors":"Madhavarapu Chandan, S. G. Santhi, T. Srinivasa Rao","doi":"10.1142/s0219467825500342","DOIUrl":null,"url":null,"abstract":"Due to the major operating restrictions, ensuring security is the fundamental problem of Wireless Sensor Networks (WSNs). Because of their inadequate security mechanisms, WSNs are indeed a simple point for malware (worms, viruses, malicious code, etc.). According to the epidemic nature of worm propagation, it is critical to develop a worm defense mechanism in the network. This concept aims to establish novel malware detection in WSN that consists of several phases: “(i) Preprocessing, (ii) feature extraction, as well as (iii) detection”. At first, the input data is subjected for preprocessing phase. Then, the feature extraction takes place, in which principal component analysis (PCA), improved linear discriminant analysis (LDA), and autoencoder-based characteristics are retrieved. Moreover, the retrieved characteristics are subjected to the detection phase. The detection is performed employing combined shallow learning and DL. Further, the shallow learning includes decision tree (DT), logistic regression (LR), and Naive Bayes (NB); the deep learning (DL) includes deep neural network (DNN), convolutional neural network (CNN), and recurrent neural network (RNN). Here, the DT output is given to the DNN, LR output is subjected to CNN, and the NB output is given to the RNN, respectively. Eventually, the DNN, CNN, and RNN outputs are averaged to generate a successful outcome. The combination can be thought of as an Ensemble classifier. The weight of the RNN is optimally tuned through the Self Improved Shark Smell Optimization with Opposition Learning (SISSOOL) model to improve detection precision and accuracy. Lastly, the outcomes of the suggested approach are computed in terms of different measures.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined Shallow and Deep Learning Models for Malware Detection in Wsn\",\"authors\":\"Madhavarapu Chandan, S. G. Santhi, T. Srinivasa Rao\",\"doi\":\"10.1142/s0219467825500342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the major operating restrictions, ensuring security is the fundamental problem of Wireless Sensor Networks (WSNs). Because of their inadequate security mechanisms, WSNs are indeed a simple point for malware (worms, viruses, malicious code, etc.). According to the epidemic nature of worm propagation, it is critical to develop a worm defense mechanism in the network. This concept aims to establish novel malware detection in WSN that consists of several phases: “(i) Preprocessing, (ii) feature extraction, as well as (iii) detection”. At first, the input data is subjected for preprocessing phase. Then, the feature extraction takes place, in which principal component analysis (PCA), improved linear discriminant analysis (LDA), and autoencoder-based characteristics are retrieved. Moreover, the retrieved characteristics are subjected to the detection phase. The detection is performed employing combined shallow learning and DL. Further, the shallow learning includes decision tree (DT), logistic regression (LR), and Naive Bayes (NB); the deep learning (DL) includes deep neural network (DNN), convolutional neural network (CNN), and recurrent neural network (RNN). Here, the DT output is given to the DNN, LR output is subjected to CNN, and the NB output is given to the RNN, respectively. Eventually, the DNN, CNN, and RNN outputs are averaged to generate a successful outcome. The combination can be thought of as an Ensemble classifier. The weight of the RNN is optimally tuned through the Self Improved Shark Smell Optimization with Opposition Learning (SISSOOL) model to improve detection precision and accuracy. Lastly, the outcomes of the suggested approach are computed in terms of different measures.\",\"PeriodicalId\":44688,\"journal\":{\"name\":\"International Journal of Image and Graphics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Image and Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219467825500342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219467825500342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

由于主要的操作限制,确保安全是无线传感器网络的根本问题。由于其安全机制不足,无线传感器网络确实是恶意软件(蠕虫、病毒、恶意代码等)的一个简单点。根据蠕虫传播的流行性,在网络中开发蠕虫防御机制至关重要。这一概念旨在在WSN中建立新的恶意软件检测,该检测由几个阶段组成:“(i)预处理,(ii)特征提取,以及(iii)检测”。首先,对输入数据进行预处理。然后,进行特征提取,其中检索主成分分析(PCA)、改进的线性判别分析(LDA)和基于自动编码器的特征。此外,对检索到的特征进行检测阶段。使用组合的浅层学习和DL来执行检测。此外,浅层学习包括决策树(DT)、逻辑回归(LR)和朴素贝叶斯(NB);深度学习(DL)包括深度神经网络(DNN)、卷积神经网络(CNN)和递归神经网络(RNN)。这里,DT输出分别被给予DNN,LR输出被给予CNN,NB输出被给予RNN。最终,对DNN、CNN和RNN的输出进行平均,以产生成功的结果。该组合可以被认为是一个集合分类器。RNN的权重通过自改进的鲨鱼嗅觉优化与反对学习(SISSOOL)模型进行优化调整,以提高检测精度和准确性。最后,根据不同的衡量标准对所建议的方法的结果进行了计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combined Shallow and Deep Learning Models for Malware Detection in Wsn
Due to the major operating restrictions, ensuring security is the fundamental problem of Wireless Sensor Networks (WSNs). Because of their inadequate security mechanisms, WSNs are indeed a simple point for malware (worms, viruses, malicious code, etc.). According to the epidemic nature of worm propagation, it is critical to develop a worm defense mechanism in the network. This concept aims to establish novel malware detection in WSN that consists of several phases: “(i) Preprocessing, (ii) feature extraction, as well as (iii) detection”. At first, the input data is subjected for preprocessing phase. Then, the feature extraction takes place, in which principal component analysis (PCA), improved linear discriminant analysis (LDA), and autoencoder-based characteristics are retrieved. Moreover, the retrieved characteristics are subjected to the detection phase. The detection is performed employing combined shallow learning and DL. Further, the shallow learning includes decision tree (DT), logistic regression (LR), and Naive Bayes (NB); the deep learning (DL) includes deep neural network (DNN), convolutional neural network (CNN), and recurrent neural network (RNN). Here, the DT output is given to the DNN, LR output is subjected to CNN, and the NB output is given to the RNN, respectively. Eventually, the DNN, CNN, and RNN outputs are averaged to generate a successful outcome. The combination can be thought of as an Ensemble classifier. The weight of the RNN is optimally tuned through the Self Improved Shark Smell Optimization with Opposition Learning (SISSOOL) model to improve detection precision and accuracy. Lastly, the outcomes of the suggested approach are computed in terms of different measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Image and Graphics
International Journal of Image and Graphics COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.40
自引率
18.80%
发文量
67
期刊最新文献
Design and Implementation of Novel Hybrid and Multiscale- Assisted CNN and ResNet Using Heuristic Advancement of Adaptive Deep Segmentation for Iris Recognition Dwarf Mongoose Optimization with Transfer Learning-Based Fish Behavior Classification Model MRCNet: Multi-Level Residual Connectivity Network for Image Classification Feature Matching-Based Undersea Panoramic Image Stitching in VR Animation Multi-disease Classification of Mango Tree Using Meta-heuristic-based Weighted Feature Selection and LSTM Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1