M. Mace, S. A. Mutalib, M. Ogrinc, N. Goldsmith, E. Burdet
{"title":"可抓握:一种精确,灵敏和强大的数字设备,用于测量握力","authors":"M. Mace, S. A. Mutalib, M. Ogrinc, N. Goldsmith, E. Burdet","doi":"10.1177/20556683221078455","DOIUrl":null,"url":null,"abstract":"Introduction Grip strength is a reliable biomarker of overall health and physiological well-being. It is widely used in clinical practice as an outcome measure. This paper demonstrates the measurement characteristics of GripAble, a wireless mobile handgrip device that measures grip force both isometrically and elastically-resisted for assessment and training of hand function. Methods A series of bench tests were performed to evaluate GripAble's grip force measurement accuracy and sensitivity. Measurement robustness was evaluated through repeated drop tests interwoven with error verification test phases. Results GripAble's absolute measurement error at the central position was under 0.81 and 1.67 kg (95th percentiles; N = 47) when measuring elastically and isometrically, respectively, providing similar or better accuracy than the industry-standard Jamar device. Sensitivity was measured as 0.062 ± 0.015 kg (mean ± std; 95th percentiles: [0.036, 0.089] kg; N = 47), independent of the applied force. There was no significant performance degradation following impact from 30 drops from a height >1.5 m. Conclusion GripAble is an accurate and reliable grip strength dynamometer. It is highly sensitive and robust, which in combination with other novel features (e.g. portability, telerehabilitation and digital data tracking) enable broad applicability in a range of clinical caseloads and environments.","PeriodicalId":43319,"journal":{"name":"Journal of Rehabilitation and Assistive Technologies Engineering","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"GripAble: An accurate, sensitive and robust digital device for measuring grip strength\",\"authors\":\"M. Mace, S. A. Mutalib, M. Ogrinc, N. Goldsmith, E. Burdet\",\"doi\":\"10.1177/20556683221078455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction Grip strength is a reliable biomarker of overall health and physiological well-being. It is widely used in clinical practice as an outcome measure. This paper demonstrates the measurement characteristics of GripAble, a wireless mobile handgrip device that measures grip force both isometrically and elastically-resisted for assessment and training of hand function. Methods A series of bench tests were performed to evaluate GripAble's grip force measurement accuracy and sensitivity. Measurement robustness was evaluated through repeated drop tests interwoven with error verification test phases. Results GripAble's absolute measurement error at the central position was under 0.81 and 1.67 kg (95th percentiles; N = 47) when measuring elastically and isometrically, respectively, providing similar or better accuracy than the industry-standard Jamar device. Sensitivity was measured as 0.062 ± 0.015 kg (mean ± std; 95th percentiles: [0.036, 0.089] kg; N = 47), independent of the applied force. There was no significant performance degradation following impact from 30 drops from a height >1.5 m. Conclusion GripAble is an accurate and reliable grip strength dynamometer. It is highly sensitive and robust, which in combination with other novel features (e.g. portability, telerehabilitation and digital data tracking) enable broad applicability in a range of clinical caseloads and environments.\",\"PeriodicalId\":43319,\"journal\":{\"name\":\"Journal of Rehabilitation and Assistive Technologies Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rehabilitation and Assistive Technologies Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/20556683221078455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rehabilitation and Assistive Technologies Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/20556683221078455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
GripAble: An accurate, sensitive and robust digital device for measuring grip strength
Introduction Grip strength is a reliable biomarker of overall health and physiological well-being. It is widely used in clinical practice as an outcome measure. This paper demonstrates the measurement characteristics of GripAble, a wireless mobile handgrip device that measures grip force both isometrically and elastically-resisted for assessment and training of hand function. Methods A series of bench tests were performed to evaluate GripAble's grip force measurement accuracy and sensitivity. Measurement robustness was evaluated through repeated drop tests interwoven with error verification test phases. Results GripAble's absolute measurement error at the central position was under 0.81 and 1.67 kg (95th percentiles; N = 47) when measuring elastically and isometrically, respectively, providing similar or better accuracy than the industry-standard Jamar device. Sensitivity was measured as 0.062 ± 0.015 kg (mean ± std; 95th percentiles: [0.036, 0.089] kg; N = 47), independent of the applied force. There was no significant performance degradation following impact from 30 drops from a height >1.5 m. Conclusion GripAble is an accurate and reliable grip strength dynamometer. It is highly sensitive and robust, which in combination with other novel features (e.g. portability, telerehabilitation and digital data tracking) enable broad applicability in a range of clinical caseloads and environments.