Abdullahi Umar Ibrahim, Ayse Gunay Kibarer, Fadi M. Al-Turjman
{"title":"计算机辅助从微生物学和放射学图像中检测肺结核","authors":"Abdullahi Umar Ibrahim, Ayse Gunay Kibarer, Fadi M. Al-Turjman","doi":"10.1162/dint_a_00198","DOIUrl":null,"url":null,"abstract":"\n Tuberculosis caused by Mycobacterium tuberculosis have been a major challenge for medical and healthcare sectors in many underdeveloped countries with limited diagnosis tools. Tuberculosis can be detected from microscopic slides and chest X-ray but as a result of the high cases of tuberculosis, this method can be tedious for both Microbiologists and Radiologists and can lead to miss-diagnosis. These challenges can be solved by employing Computer-Aided Detection (CAD)via AI-driven models which learn features based on convolution and result in an output with high accuracy. In this paper, we described automated discrimination of X-ray and microscope slide images into tuberculosis and non-tuberculosis cases using pretrained AlexNet Models. The study employed Chest X-ray dataset made available on Kaggle repository and microscopic slide images from both Near East University Hospital and Kaggle repository. For classification of tuberculosis using microscopic slide images, the model achieved 90.56% accuracy, 97.78% sensitivity and 83.33% specificity for 70: 30 splits. For classification of tuberculosis using X-ray images, the model achieved 93.89% accuracy, 96.67% sensitivity and 91.11% specificity for 70:30 splits. Our result is in line with the notion that CNN models can be used for classifying medical images with higher accuracy and precision.","PeriodicalId":34023,"journal":{"name":"Data Intelligence","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computer-aided Detection of Tuberculosis from Microbiological and Radiographic Images\",\"authors\":\"Abdullahi Umar Ibrahim, Ayse Gunay Kibarer, Fadi M. Al-Turjman\",\"doi\":\"10.1162/dint_a_00198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Tuberculosis caused by Mycobacterium tuberculosis have been a major challenge for medical and healthcare sectors in many underdeveloped countries with limited diagnosis tools. Tuberculosis can be detected from microscopic slides and chest X-ray but as a result of the high cases of tuberculosis, this method can be tedious for both Microbiologists and Radiologists and can lead to miss-diagnosis. These challenges can be solved by employing Computer-Aided Detection (CAD)via AI-driven models which learn features based on convolution and result in an output with high accuracy. In this paper, we described automated discrimination of X-ray and microscope slide images into tuberculosis and non-tuberculosis cases using pretrained AlexNet Models. The study employed Chest X-ray dataset made available on Kaggle repository and microscopic slide images from both Near East University Hospital and Kaggle repository. For classification of tuberculosis using microscopic slide images, the model achieved 90.56% accuracy, 97.78% sensitivity and 83.33% specificity for 70: 30 splits. For classification of tuberculosis using X-ray images, the model achieved 93.89% accuracy, 96.67% sensitivity and 91.11% specificity for 70:30 splits. Our result is in line with the notion that CNN models can be used for classifying medical images with higher accuracy and precision.\",\"PeriodicalId\":34023,\"journal\":{\"name\":\"Data Intelligence\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/dint_a_00198\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/dint_a_00198","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Computer-aided Detection of Tuberculosis from Microbiological and Radiographic Images
Tuberculosis caused by Mycobacterium tuberculosis have been a major challenge for medical and healthcare sectors in many underdeveloped countries with limited diagnosis tools. Tuberculosis can be detected from microscopic slides and chest X-ray but as a result of the high cases of tuberculosis, this method can be tedious for both Microbiologists and Radiologists and can lead to miss-diagnosis. These challenges can be solved by employing Computer-Aided Detection (CAD)via AI-driven models which learn features based on convolution and result in an output with high accuracy. In this paper, we described automated discrimination of X-ray and microscope slide images into tuberculosis and non-tuberculosis cases using pretrained AlexNet Models. The study employed Chest X-ray dataset made available on Kaggle repository and microscopic slide images from both Near East University Hospital and Kaggle repository. For classification of tuberculosis using microscopic slide images, the model achieved 90.56% accuracy, 97.78% sensitivity and 83.33% specificity for 70: 30 splits. For classification of tuberculosis using X-ray images, the model achieved 93.89% accuracy, 96.67% sensitivity and 91.11% specificity for 70:30 splits. Our result is in line with the notion that CNN models can be used for classifying medical images with higher accuracy and precision.